• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@MEF
  • Enstitüler
  • Fen Bilimleri Enstitüsü
  • Yüksek Lisans
  • FBE, Yüksek Lisans, Büyük Veri Analitiği
  • View Item
  •   DSpace@MEF
  • Enstitüler
  • Fen Bilimleri Enstitüsü
  • Yüksek Lisans
  • FBE, Yüksek Lisans, Büyük Veri Analitiği
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Advanced Search

Sms spam detection in Turkish language

Thumbnail

View/Open

orgınal (3Mb)

Access

info:eu-repo/semantics/openAccess

Date

2018

Author

Gürkan, Cem Kaya

Metadata

Show full item record

Citation

Gürkan, CK. (2018). Sms spam detection in Turkish language, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye

Abstract

Short message (SMS) is one of the most common communication methods. The growth of mobile phone users has led to a dramatic increase in using short messages. With the increasing number of mobile phone users, mobile phone users have started receiving unsolicited text messages. The use of SMS as a spam tool after the e-mail is due to a direct access to customer and high reversion to the users. These unsolicited short messages are disturbing the users even content intended for deceiving or defrauding (phishing). Up to date, all of the research carried out on SMS Spam detection was focused on the English language. In this study, Turkish datasets tagged with spam information is introduced and existing methods for English are applied to these datasets. The SMS dataset used in this study is gathered from different people and all messages are tagged according to whether they are spam or not. Naïve Bayes, Logistic Regression, SGD, SVM and Random Forest classification algorithms are tested with three feature extraction methods and a number of performance measures are evaluated. The evaluation resulted in a f-measure of 96.4% for SVM classification algorithm with TF-IDF (Term Frequency-Inverse Document Frequency) extraction method.
 
SMS en çok kullanılan iletişim yöntemlerimden biridir. Mobil telefon kullanımı artmasıyla kısa mesaj kullanımını da artmıştır. Mobil telefon kullanımın artmasıyla mobil kullanıcılar da izinsiz olarak kısa mesaj (reklam, kumar vs.) almaya başlamışlardır. Epostadan sonra kısa mesajın da izinsiz iletişim yöntemi olarak kullanılmasının amacı kullanıcılara direk erişim ve geri dönüşün yüksek olmasıdır. İzinsiz gönderilen kısa mesajlar kullanıcıları rahatsız etmekte hatta kandırmaya veya dolandırmaya yönelik içerik barındırmaktadır. Günümüze kadar izinsiz SMS algılama yöntemleri, genelde İngilizce üzerine yoğunlaşmıştır. Bu çalışma kapsamında izinsiz SMS algılama için Türkçe veri seti oluşturulmuş ve daha önce İngilizce’ de yapılmış çalışmalarda denenen yöntemlerin Türkçe’ de gösterdikleri başarılar incelenmiştir. Çalışmada kullanılan SMS veri seti için gönüllü kişilerden gönderilen veya alınan mesajlar toplanmış ve mesajlar istenmeyen olup olmadığına göre işaretlenmiştir. Naïve Bayes, Logistic Regression, SGD, SVM ve Random Forest sınıflandırma algoritmaları 3 farklı özellik çıkarma yöntemiyle test edilmiş ve farklı performans ölçümleme skorları çıkarılmıştır. Sonuçta en iyi performans %96,4 F1-skoru ile TF-IDF özellik çıkarma metoduyla SVM sınıflandırma algoritması kullanıldığında ölçümlenmiştir.
 

URI

https://hdl.handle.net/20.500.11779/1177

Collections

  • FBE, Yüksek Lisans, Büyük Veri Analitiği [101]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@MEF

by OpenAIRE

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsInstitution AuthorTitlesORCIDSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeThis CollectionBy Issue DateAuthorsInstitution AuthorTitlesORCIDSubjectsTypeLanguageDepartmentCategoryPublisherAccess Type

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || MEF University || OAI-PMH ||

MEF University Library, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
MEF University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@MEF:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.