• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@MEF
  • Enstitüler
  • Fen Bilimleri Enstitüsü
  • Yüksek Lisans
  • FBE, Yüksek Lisans, Büyük Veri Analitiği
  • View Item
  •   DSpace@MEF
  • Enstitüler
  • Fen Bilimleri Enstitüsü
  • Yüksek Lisans
  • FBE, Yüksek Lisans, Büyük Veri Analitiği
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Advanced Search

benchmarking of recommendation models for an on-line fast fashion retailer

Thumbnail

View/Open

YL-Proje Dosyası (1.102Mb)

Access

info:eu-repo/semantics/openAccess

Date

2018

Author

Tilkat, Mustafa

Metadata

Show full item record

Citation

Tilkat, M. (2018). benchmarking of recommendation models for an on-line fast fashion retailer, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye

Abstract

This project studies the usage of the recommendation engines to improve the sales in an online fashion retailer. Fashion retailers sale variety of products throughout their online channels. Since the number of products can be huge compared to an in-line shop, customers may miss some of them while shopping online. Hence, it is crucial to display products that are more likely to be purchased by a customer when the customer is surfing on the website. Our problem is motivated by practice at an online fashion retailer in Turkey. Four collaborative filtering-based algorithms and a random recommender are utilized to design a recommendation engine. 80% of the data is used for training while the other 20% is to used test the designed method. Based on our experiments, User Based Collaborative Filtering (UBCF) using Pearson correlation outperform the other algorithms based on Receiver Operating Characteristic (ROC) curve.
 
Bu projede, bir online moda perakendecisinde satışları iyileştirmek için öneri sistemlerinin nasıl uygulanacağı anlatılmıştır. Moda perakendecilerinin online kanallarında ürün çeşitliliği oldukça fazla olabilmektedir. Ürünlerin sayısı normal bir mağazayla karşılaştırıldığında çok büyük olabileceğinden, müşteriler online alışveriş yaparken bazı modelleri gözden kaçırabilmekte veya aradıkları ürünleri kolayca bulamayabilmektedirler. Bu nedenle, müşteri bir web sitesinde gezinirken bir müşteri tarafından satın alınma olasılığı daha yüksek olan ürünleri müşteriye sunabilme kabiliyeti oldukça önemlidir. Problemimiz, Türkiye'de bir online moda perakendecisi dataları üzerinde uygulama yaparak tatmin edici sonuçlar bulmak üzerine motive edilmiştir. Bir öneri motoru tasarlamak için dört farklı işbirlikçi filtreleme (Collaborative filtering) tabanlı algoritma ve rastgele çeşitli öneriler sunabilecek arı bir baz model kullanılmaktadır. Verilerin% 80'i eğitim seti,% 20'si ise tasarlanan yöntemi test etmek için kullanılmıştır. Deneylerimize dayanarak, Pearson korelasyonunu kullanan Kullanıcı Tabanlı İşbirlikli Filtreleme (User Based Collaborative Filtering) modelinin, ROC eğrisine bakıldığında diğer algoritmalara göre daha iyi bir performans ortaya koyduğu gözlemlenmiştir.
 

URI

https://hdl.handle.net/20.500.11779/1197

Collections

  • FBE, Yüksek Lisans, Büyük Veri Analitiği [101]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@MEF

by OpenAIRE

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsInstitution AuthorTitlesORCIDSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeThis CollectionBy Issue DateAuthorsInstitution AuthorTitlesORCIDSubjectsTypeLanguageDepartmentCategoryPublisherAccess Type

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || MEF University || OAI-PMH ||

MEF University Library, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
MEF University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@MEF:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.