• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@MEF
  • Enstitüler
  • Fen Bilimleri Enstitüsü
  • Yüksek Lisans
  • FBE, Yüksek Lisans, Büyük Veri Analitiği
  • View Item
  •   DSpace@MEF
  • Enstitüler
  • Fen Bilimleri Enstitüsü
  • Yüksek Lisans
  • FBE, Yüksek Lisans, Büyük Veri Analitiği
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Advanced Search

Predicttion of brent oil spot prices using country based ınventory and trading data

Thumbnail

View/Open

YL-Proje Dosyası (1.064Mb)

Access

info:eu-repo/semantics/openAccess

Date

2019

Author

Usta, İsmail Batur

Metadata

Show full item record

Citation

Usta, İB. (2019). Predicttion of brent oil spot prices using country based ınventory and trading data, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye

Abstract

Crude oil price forecasting has been the focus of numerous authorities, yet the task still persists on being a challenging one. The extremely volatile nature of oil market and high number of active players in it makes establishing a solid forecasting model that is constantly relevant to time very difficult. Recent advancements on data technologies, mainly ever-increasing computing power and trending big data technologies allowed new approaches to be born. From online learners to natural language processing, advanced data analytics models were employed with the help of easily accessible and diverse data. This project is an attempt on making use of such available data in order to forecast Brent oil spot price. By using monthly country by country inventory, trading and economic data, strong drivers of crude price was explored. The data used in this project comes from various sources and in multiple formats, with the final merged data frame has over 17000 observations and contains information on 86 countries. To enhance prediction power, a specialized learner is fit on each country individually and then the predictions are accumulated and filtered before outputting a single prediction. Compared to a single predictor, this approach enhanced the predictive power of the algorithm by adapting to dynamics of each country.
 
Ham petrol fiyat tahmini birçok çalışmanın odak noktası olmuş olmasına rağmen zorlu bir iş olma özelliğini sürdürmektedir. Ham petrol marketinin istikrarsız doğası ve çok sayıda oyuncuya sahip olması sağlam temellere dayanan ve zaman ile geçerliliğini yitirmeyen bir tahmin edicinin yaratılmasını hayli zor kılmaktadır. Veri teknolojilerindeki yeni gelişmeler, özellikle sürekli artan işlem gücü ve büyük very teknolojilerinin gündemde önemli yer tutmaya başlaması, yeni yaklaşımların doğmasına ortam sağlamıştır. Kolay ulaşılabilir ve çeşitli veri ile çevrimiçi öğrenicilerden doğal dil işlemeye, ileri veri analitiği modelleri uygulanmaya başlanmıştır. Bu çalışma da bu şekilde mevcut veriyi kullanarak Brent ham petrolü spot fiyatını tahmin etmeye çalışmak için yapılmıştır. Ülke bazlı envanter, ticaret ve ekonomik veri kullanılarak ham petrol fiyatının sürücü güçleri tespit edilmeye çalışılmştır. Bu çalışmada kullanılan veri birçok kaynaktan ve farklı formatlarda gelmektedir. Veri tablosunun işlemeye hazır hali 17000’in üzerinde gözlem ve 86 farklı ülkeye ait veriye sahiptir. Modelin tahmin etme gücünü arttırmak için her ülkeye özgü şekilde oluşturulmuş modeler yaratılarak tahminleri bir araya getirilip filtrelendikten sonra ana tahmin ortaya çıkarılmıştır. Her ülkenin dinamiklerine adapte olmayı başararak, bu model tekil bir tahmin ediciye kıyasla daha iyi bir tahmin etme gücüne sahiptir.
 

URI

https://hdl.handle.net/20.500.11779/1219

Collections

  • FBE, Yüksek Lisans, Büyük Veri Analitiği [101]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@MEF

by OpenAIRE

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsInstitution AuthorTitlesORCIDSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeThis CollectionBy Issue DateAuthorsInstitution AuthorTitlesORCIDSubjectsTypeLanguageDepartmentCategoryPublisherAccess Type

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || MEF University || OAI-PMH ||

MEF University Library, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
MEF University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@MEF:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.