Customer segmentation and churn prediction via customer metrics
Citation
Bozkan, T., Çakar, T., Sayar, A., & Ertuğrul, S. (15-18 May 2022). Customer Segmentation and Churn Prediction via Customer Metrics. In 2022 30th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE. Safranbolu, Turkey.Abstract
Bu çalışmada faktoring sektöründe faaliyet gösteren müşterilerin geçmişte yapmış oldukları işlem hareketleri ve sahip oldukları risk, limit ve şirket verileri üzerinden, son işlem tarihlerinden sonra gelecek üç ay içerisinde işlem yapmaya devam edip etmemelerini veri güdümlü makine öğrenimi modelleri kullanarak tahmin edilmesi amaçlandı. Kurulan modeller sonucunda iki farklı müşteri grubunun (Gerçek ve Tüzel şirket) Kayıp Analizi (Churn) gerçekleştirildi. XGBoost modeli ile %74 ve %77 oranında F1-Skoru ile tahmin edildi. Bu modelleme sayesinde ayrılacak olan müşterilerin tahminlemesi ile birlikte bu müşteri gruplarına yapılacak özel promosyonlar, kampanyalar sayesinde müşterileri elde tutma oranının artırılması amaçlandı. Elde tutma oranlarının artması sayesinde şirket bazında işlem hacmine doğrudan katkı yapılması sağlandı. In this study, it is aimed to predict whether customers operating in the factoring sector will continue to trade in the next three months after the last transaction date, using data- driven machine learning models, based on their past transaction movements and their risk, limit and company data. As a result of the models established, Loss Analysis (Churn) of two different customer groups (Real and Legal factory) wascarried out. It was estimated by the XGBoost model with anF1 Score of 74% and 77%. Thanks to this modeling, it was aimed to increase the retention rate of customers through special promotions and campaigns to be made to these customer groups, together with the prediction of the customerswho will leave. Thanks to the increase in retention rates, a direct contribution to the transaction volume on a company basis was ensured.