Abstract—The goal of this article is to design an admittance controller for a robot to adaptively change its contribution to a collaborative manipulation task executed with a human partner to improve the task performance. This has been achieved by adaptive scaling of human force based on her/his movement intention while paying attention to the requirements of different task phases. In our approach, movement intentions of human are estimated from measured human force and velocity of manipulated object, and converted to a quantitative value using a fuzzy logic scheme. This value is then utilized as a variable gain in an admittance controller to adaptively adjust the contribution of robot to the task without changing the admittance time constant. We demonstrate the benefits of the proposed approach by a pHRI experiment utilizing Fitts’ reaching movement task. The results of the experiment show that there is a) an optimum admittance time constant maximizing the human force amplification and b) a desirable admittance gain profile which leads to a more effective co-manipulation in terms of overall task performance.

Index Terms—Physical human-robot interaction, collaborative manipulation, adaptive force amplification, admittance control, human intention, Fitts’ task.

I. INTRODUCTION

HUMAN and robot, working together, are expected to play an important role in the foreseeable future. The increasing demand for high-quality and more flexible systems to carry out complex tasks put this dyad firmly in the field. Integrating human’s dexterity and problem-solving skills along with robot’s precision, strength, and repeatability into tasks involving physical interaction between them, pHRI, could be quite beneficial. Such a collaborative interaction may lead to a more effective co-manipulation in terms of overall task performance.

In order to make pHRI more effective, we need robots to anticipate the human partner’s intentions and act accordingly [7]. In this regard, one of the sensory channels that flourish in nowadays is haptics [8]. For example, if we consider a collaborative object manipulation task (see Fig. 1), the direction of force applied by human operator can be used to set the intended direction of object movement, while its magnitude can be used to regulate the movement speed of the object by robot.

To this end, interaction controllers (admittance or its reciprocal, impedance controllers) are commonly utilized to regulate the physical interaction between human and robot. In general, it is more natural to utilize admittance controller when robots used in pHRI do not possess high back drivability and force control. As such robots are usually motion-controlled, the force applied by human can serve as the input to admittance controller, which computes the reference motion trajectory for the manipulated object.

Although admittance controllers have been used in pHRI studies in the past, the use of a standard admittance controller in which controller parameters are fixed has some limitations. A standard admittance controller may not be flexible enough to handle changes in human intentions and task requirements, which happen frequently during the execution of a collaborative task. The changes in human intention due to varying requirements of a task typically suggest that human expects either more resistive or more compliant behavior from robot. For instance, collaborative manipulation of an object typically involves three main phases, which demands different behaviors from robot in those phases; human initializes the motion (i.e. starting phase), guides the robot to bring the object closer to a target location (i.e. driving phase), and then precisely positions it to park at that location (i.e. parking phase). Initially, the task requires a rapid reaction from the robot while avoiding a jerky behavior, hence, an admittance controller having moderate dissipation capacity might be more desirable at this stage. Thereafter, during driving the manipulated object, lower dissipation capacity is preferred to promote acceleration, and hence to reduce the overall task duration and human effort. Following, as the object gets closer to the target location, increasing the dissipation gradually is needed to decelerate the object. While parking the object, maximizing the precision is more critical than reducing human effort. Human operator naturally stiffens her/his arm muscles to park the object precisely, which may degrade the stability of pHRI. In this phase of the task, if the controller parameters are adjusted to dissipate more energy, not only the stability but also the parking precision is improved.

Consequently, an adaptive admittance controller where controller parameters are no longer fixed may adapt better to
varying needs of human operator in pHRI. However, as the physical strength of human is limited in performing some pHRI tasks such as manipulating heavy objects, it is required to further exploit robot’s strength. In such a case, human applies some force to the object for guidance, while robot scales up this force to help with its manipulation [9], [10]. On the other hand, in some other applications, such as robot-assisted micro surgery, where only small forces are expected to be applied to the manipulated object, human force attenuation is desired [11].

In this study, we propose an approach for human force scaling to adaptively change the contribution of robot to a collaborative manipulation task in order to improve the task performance. In our approach, movement intentions of human are estimated from measured human force and velocity of manipulated object, and converted to a quantitative index using a fuzzy logic scheme. This index is then utilized as a variable gain in an admittance controller to scale up/down the force applied by robot to the object. In essence, such an approach is similar to the adaptive admittance controller, but here, the gain contribution of the controller, not just the parameters of it, is varied. In order to adjust the contribution of robot, a frequently utilized approach in literature is to alter the dissipation capacity of the admittance controller by varying the admittance damping, but this also affects the time constant of the controller. On the other hand, our approach allows to change the gain contribution of the controller alone without changing its time constant. Therefore, the proposed approach enables a direct control of both the gain and time constant of an admittance controller, which provides flexibility in achieving different goals at different stages of a pHRI task, leading to an improvement in overall task performance.

A. Related Work

There are already studies in the literature on estimation of human intention to regulate an interaction controller for intuitive pHRI. For instance, Ikeura et al. [12] utilized the velocity of manipulated object to alter the damping parameter of a variable admittance controller. In their approach, if the magnitude of object velocity was higher (lower) than a threshold value, human was assumed to speed up (slow down), and hence, the admittance damping was set to a low (high) value to promote (damp) the motion. Kang et al. [13] used object velocity to estimate human intention as to accelerate (decelerate) the object. Accordingly, when human force exceeded a certain threshold value, admittance damping was decreased (increased) as the object velocity increased (decreased). Tsunemugiwa et al. [14] and Rahman et al. [15] estimated human arm stiffness and adjusted the admittance damping on-the-fly in proportion to the estimated stiffness and depending on some velocity thresholds. In [16]–[18], human intention was estimated based on the measurement of muscle activation of human arm via EMG sensors to provide effective assistance in co-manipulation tasks. Keemink et al. [19] proposed a position-dependent admittance damping for co-manipulation of heavy objects and investigated its effect on the accuracy of object positioning, reaching time, and magnitude of force applied by human. Starting from a low value, they increased the damping between starting and target locations as a linear function of position. The methods suggested in [12]–[15], [19] relied on either some velocity or force thresholds, or position of the manipulated object, which are task-dependent information, restricting the practical use of such methods. Also, the estimation of human arm stiffness in [14] and [15] requires additional computational effort, which is not trivial if pHRI task is complex. Similarly, utilizing EMG sensors for intent detection is not very practical [16]–[18], since it requires to attach them to user’s arm.

There are several studies in the literature utilizing the force-based information to infer the human intention as well. For instance, Li et al. [20], [21] utilized force applied by human to interpret human intention to adjust the controller parameters accordingly. In their approach, damping was increased to improve accuracy (decreased for more compliance), when the human force was low (high). Duchaine and Gosselin [22] and Duchaine et al. [23] utilized the derivative of the force applied by human and the velocity of manipulated object together to predict whether human intends to accelerate or decelerate the object. Aydin et al. [24] improved the approach proposed in [22] by adding a fuzzy-based intention estimator. Instead of using the derivative of interaction force, Lecours et al. [25] preferred the acceleration output of admittance controller directly, so that the noise in force measurement would not adversely affect the intention estimation. They used the admittance acceleration in tandem with the velocity of manipulated object to estimate whether human intends to accelerate or decelerate the object. Dimeas and Aspragathos [26] proposed a fuzzy-based online adaptation technique that utilizes the end-effector velocity of robot and force applied by human to alter the admittance damping. In [22]–[26], admittance damping was increased or decreased when the human intention was estimated as deceleration or acceleration, respectively.

In some pHRI applications, researchers have relied on amplification (attenuation) of human force to increase (decrease) the contribution of robot to the collaborative task [11], [27]–[29]. A well-known example in this group is exoskeletons [9], [30]–[32] which are designed to amplify human force. This approach has applications in different domains including rehabilitation, military, and industry. In the studies listed above, amplification (attenuation) is achieved by first scaling up (down) the forces applied by human and then feeding it to an admittance controller to generate a velocity command for the robot interacting with the environment.
However, force scaling approaches used in those studies typically utilize constant amplification/attenuation gain. We believe that an adaptive force scaling, based on human intention, may result in improvements in task performance for pHRI tasks that involve even no contact interactions with an environment such as collaborative manipulation of objects.

B. Contributions

In earlier pHRI studies [12]–[26], adaptive approaches based on human intention have been investigated to alter parameters of an interaction controller. In those studies, human intent has been typically interpreted as “acceleration” or “deceleration” without paying sufficient attention to different phases of a pHRI task (i.e. sub-tasks). However, as explained earlier, each phase of a pHRI task requires different actions from the controller, so the desired behavior under the specific phase can be achieved. Therefore, we argue that adaptive scaling of human force based on not only the human intention but also the task phases, such as starting, driving, and parking in object manipulation, would further enhance the quality of pHRI.

Although there are several studies in the pHRI literature aiming to reduce human effort and task performance, to our knowledge, adaptive scaling of human force using an admittance controller has not been proposed for collaborative manipulation of a heavy/bulky object. In our approach, human intention as to accelerate or decelerate a manipulated object is estimated by a rule-based approach and converted to a quantitative index using a fuzzy logic scheme. This index is then integrated over time to accommodate the different requirements of each manipulation phase. Finally, the integrated value at each time step is used to alter the gain of an admittance controller on the fly for adaptive scaling of human force.

Using the proposed approach, we investigate a) if there is an optimal admittance time constant that maximizes human force amplification and b) if the resulting admittance gain profile leads to a further enhancement in a co-manipulation performance than the ones suggested in the literature.

The rest of this article is organized as follows: Section II introduces the admittance controller architecture utilized in this study. Section III presents the proposed adaptation approach including the estimation of human intention index and how this index is used to modulate the gain of an admittance controller to adjust the contribution of robot to the task. The stability limits for the coupled system, the permissible range for the force amplification, and the selection of optimal time constant for the admittance controller are all discussed in Section IV. Section V presents the details of a pHRI experiment involving Fitts’ reaching movement task, which was conducted to investigate the potential benefits of the proposed approach. Section VI summarizes the experimental results and provides a discussion of the study. Conclusions and future research directions are given in Section VII.

II. CONTROL ARCHITECTURE

In our approach, we assume that human and robot are coupled as shown in Fig. 1 and manipulate an object together. The admittance control architecture suggested for this purpose is depicted in Fig. 2. Here, human exerts a force to move the object with a desired velocity \(v_{\text{des}} \). The force applied by human \(f_H \) is measured by a force sensor, amplified by a gain \(G_H \) and then sent to the admittance controller \(Y(s) \) of robot to adjust its contribution to the task. The admittance controller outputs a reference velocity \(v_{\text{ref}} \) for the motion controller of robot.

The inner motion controller of robot transmits sufficient torques to its joints to move the object with a velocity of \(v \). We assume that robot motion controller is robust enough such that the actual velocity of the robot \(v \) is not significantly affected by environmental forces [33], [34]. Then, the transfer function \(T(s) \) of the main pHRI closed-loop system in Fig. 2 is given by:

\[
T(s) = \frac{V(s)}{F_H(s)} = \frac{G_H Y(s) G(s) H(s)}{1 + G_H Y(s) G(s) H(s) Z_{\text{df}}(s)}
\]

where \(V(s) \) and \(F_H(s) \) are the Laplace transformations of \(v \) and \(f_H \), respectively. Here, \(H(s) = (0.1122 s + 31.75)/(s + 31.75) \) represents the model of a low pass filter applied to the measured human force, \(Z_{\text{df}}(s) \) represents the impedance of human arm, and \(G(s) = V(s)/V_{\text{ref}}(s) \) is the transfer function for robot [34], where \(V_{\text{ref}}(s) \) is the Laplace transformation of \(v_{\text{ref}} \). Note that all the variables introduced here are scalars as the study focuses on a one-dimensional co-manipulation task (see Section V).

Admittance controller: In typical implementation of an admittance controller for a pHRI task involving a collaborative object manipulation, a linear model of the following form is utilized (note that a spring element is not preferred as it forces the robot to return to an equilibrium position, which is not desirable):

\[
Y(s) = \frac{V_{\text{ref}}(s)}{F_H(s)} = \frac{1}{m_a s + b_a}
\]

where \(m_a \) and \(b_a \) represent the admittance mass and damping, respectively. Eq. (2) can be rearranged as,

\[
Y(s) = \frac{K_a}{\tau_a s + 1}
\]

where \(K_a = 1/b_a \) is the admittance gain and \(\tau_a = m_a/b_a \) is the admittance time constant. In this study, we alter the admittance gain to adjust the contribution of the robot to the task while keeping the time constant of the controller unchanged. Note that increasing (decreasing) the admittance gain decreases (increases) the energy dissipation of the controller.
Tuning of admittance parameters with constant ratio of m_a/b_a has been proposed in [25], but we investigate its optimum value in this study.

III. APPROACH

Recalling the co-manipulation scenario discussed earlier, different control actions should be considered for each phase of the task. To further illustrate these phases, we consider a one-dimensional co-manipulation task. We assume that a human operator and a robot collaboratively transport an object having high inertia along a straight path from a starting position to a target position which is unknown to the robot a priori. Utilizing the control architecture given in previous section, robot manipulates the object under the guidance of forces applied by the human operator. For such a task, representative profiles for the velocity of manipulated object, force applied by human, and its derivative are depicted as functions of time in Fig. 3a. As anticipated, there is a phase delay between force and velocity when the inertia of the object is relatively high. For the same reason, when such an object is already in motion, reversing the force direction to decelerate it requires additional human effort.

Considering Fig. 3a, if velocity is close to zero, velocity and force vectors are both in the same direction, and also force rate (i.e., derivative of force) is increasing in the same direction, we can argue that human intends to initialize the movement to accelerate the object (i.e., starting phase). When the velocity is sufficiently high, we can say that driving phase is being executed. If the velocity is close to zero again but force and force rate are in opposite directions, we can assume that human intends to park the object to the target location. Based on the description above, one can carefully design a profile for the admittance gain to satisfy the requirements of each phase. Such a profile is given in Fig. 3b. The gain starts from a nominal value and increases slowly during the starting phase. In the driving phase, the dissipative (i.e., resistive) behavior of robot should be avoided as human desires to accelerate the object easily. At some point during this phase, human intends to decelerate the object (note that if the object has large inertia, it may continue to accelerate as in Fig. 3a; force magnitude starts to decay indicating human desires to decelerate the object though the velocity continues to increase). From this point on (see the maximum amplification point in Fig. 3b), the dissipation capacity of the controller should be increased based on how much human intends to decelerate.

In order to achieve a gain profile similar to the one proposed in Fig. 3b, we first estimate human movement intention as to accelerate or decelerate using a rule-based approach and then quantify it by a numerical value using a fuzzy logic scheme. We then integrate this value along the movement trajectory while bounding it by a logistic sigmoid function to comply with the different requirements of each task phase.

A. Estimation of Human Intention

In earlier studies, either velocity of the manipulated object and the derivative of force applied by the human [22]–[24] or velocity and force [26] were used to estimate human intention as to either accelerate or decelerate the object. In our approach, we utilize all three of them to estimate human intention and quantify it by a numerical value called as Human Intention Index (K_{HII}). All three are needed to carefully detect the human intention during the driving phase, especially when manipulating a heavy object at a high speed. Towards the end of this phase, human reverses the force direction to dissipate the generated kinetic energy in order to park the object successfully without an overshoot in the next phase. If we use force derivative and velocity only, then human intention would be detected incorrectly as acceleration during the parking phase (Fig. 3a). On the other hand, if we use force and velocity only, then the detection of deceleration intention will be delayed.

Fig. 4a shows our approach for estimating human intention. First, the features are fed to a fuzzy logic scheme which generates K_{HII}. This scheme outputs a value representing human intention as to accelerate ($0 < K_{HII} < 1$) or decelerate ($-1 < K_{HII} < 0$) the manipulated object. Each input and the output consist of three normalized triangular membership functions (positive, intermediate, and negative). The Mamdani fuzzy inference system is utilized, and the intention rules described in (4) are implemented. A representative profile of K_{HII} as a function of time is depicted in Fig. 4b.

$$
\begin{align*}
 v_f &> 0 \Rightarrow \begin{cases}
 v_f > 0 & \Rightarrow \text{Intent : acc.} \\
 v_f < 0 & \Rightarrow \text{Intent : dec.}
 \end{cases} \\
 v_f &< 0 \Rightarrow \{\text{Intent : dec.}\} \\
 v_f &\approx 0 \Rightarrow \{\text{Intent : no change}\}
\end{align*}
$$

A further processing on K_{HII} is needed to obtain the desired gain profile depicted in Fig. 3b. To this end, a simple discrete integration of K_{HII} is a practical solution. Note that derivative of force, which is typically noisy, is utilized in the computation of K_{HII}, hence such integration accumulates the index values on-the-fly, producing a profile that is not only similar to the desired gain profile but also robust to noise.

Hence, the integrated human intention index is obtained using the following equation:
We can deduce that altering the force scaling gain \(G_H \) affects both admittance damping and inertia at the same rate, resulting no change in the admittance time constant.

IV. STABILITY LIMITS

A. Stability

Stable interaction is mandatory for any pHRI system, but the trade-off between stability and transparency has to be balanced well for optimal task performance [35]. To ensure stability, we inspect the pole locations of the closed-loop transfer function, \(T(s) \), given in (1) for a range of gain \((K_a)\) and time constant \((\tau_a)\) values of the admittance controller while keeping \(G_{II} = 1 \). For this purpose, we need the transfer function models of robot and human arm impedance. We utilize UR5 (Universal Robots Inc.) as the collaborative robot in our study. Since the manufacturer does not supply the dynamical model of the robot, we rely on the transfer function model, \(G(s) \), estimated by Aydin et al. [34]. The dynamical behavior of human arm is nonlinear, time and configuration dependent. However, it is a commonly used simplifying assumption that the impedance of human arm, \(Z_H(s) \), can be described by a linearized mass-spring-damper model (see [12], [33], [34]) as \(Z_H(s) = m_H s + b_H + k_H / s \), where \(m_H, b_H, \) and \(k_H \) are the human arm endpoint mass, damping and stiffness, respectively. Although exact dynamics of human arm is unknown, the parameters of human arm impedance typically reside within specific limits. In light of the literature [36], [37], [38], the upper bound for human arm stiffness \(k_H \) is taken as 600 N/m, and the lower and upper bounds for the mass parameter \(m_H \) are taken as 0.1 and 5 kg, respectively, while the limits for the damping \(b_H \) are set to 0.1 and 41 Ns/m. For each extreme combination of parameters of human arm impedance \((m_H, b_H, k_H)\), stable sets of controller parameters \((K_a, \tau_a)\) are computed and stability boundaries are determined. Then, as suggested in [39], [40], the parameters \((K_a, \tau_a)\) corresponding to the conservative regions, where the stability is ensured under each extreme combination of human arm impedance parameters \((m_H, b_H, k_H)\), are considered as the stable controller parameters (see Fig. 5).

B. Maximum Amplification

In the above analysis, the stable region of controller parameters are determined while keeping \(G_H = 1 \). To determine the upper bound of \(G_H \) that can be used for maximum force amplification, we investigate the gain margin of the system under each set of \((K_a, \tau_a)\) in the stable region of Fig. 5. The contour plot of \(G_{II} \) values in this region is depicted in Fig. 6. From Fig. 6, we can observe that, for each time constant \(\tau_a \), amount of allowable change in amplification depends on the value of admittance gain \(K_a \). Moreover, for a given \(K_a \), there is an optimal admittance time constant, where the force amplification is maximum. In Fig. 6, this value is \(\tau_a^{opt} = 0.054 \), which can be used to determine the maximum allowable...
amplification gain, G_H^{max}, and hence the maximum effective controller gain, G_E^{max}. For example, let’s assume that the parameters of an admittance controller are $(K_a, t_{a}^{opt}) = (0.0167, 0.054)$ and the gain margin of the corresponding closed loop system is 2.68 (see point A in Fig. 6). Hence, the maximum allowable amplification gain is $G_H^{max} = 2.68$. Accordingly, the maximum effective controller gain is $G_E^{max} = G_H^{max} K_a = 0.0448$.

V. Experiment

We designed and conducted a pHRI experiment to investigate the following research questions:

Q1: Is there an optimum admittance time constant that maximizes human force amplification in pHRI for the proposed gain profile (Fig. 3b)?

Q2: Does the proposed admittance gain profile lead to a more effective co-manipulation in terms of task performance than the ones suggested in the literature?

A. Experimental Set-up

The main components of the set-up used for our pHRI experiment (see Fig. 7) consists of a collaborative robot (UR5, Universal Robot Inc.), a mobile cart that is rigidly connected to the robot and moving on a rail and carrying a mass of 26 kg (note that the mass is not shown in Fig. 7b), and two force sensors (Mini40, ATI Inc.), each measuring the force applied by subject and robot to the cart separately (see Fig. 7a, 7b). All experimental data was acquired at 125 Hz (the update rate of the closed-loop control system shown in Fig. 2) by a DAQ card (USB-6343, National Instruments Inc.). During the experiments, the instantaneous force applied to the cart by a subject is scaled up/down according to her/his movement intention and then fed to the admittance controller, which outputs a desired velocity for the cart. The robot aims to push the cart with this desired velocity until a new force input comes from the subject (see the control architecture in Fig. 2).

B. Experimental Procedure

Subjects were asked to grasp the handle shown in Fig. 7a and move the cart from a starting point to a parking zone as fast and accurate as possible. Subjects were asked to perform the task in both directions; in one trial, they pushed the cart forward, and in the successive trial, they pulled it backward. A visual feedback was provided to subjects during the experiment by displaying a moving cursor on a computer screen, emulating the movements of cart (see Fig. 7c). Subjects were asked to hold the cart stable in the parking zone for 2 seconds. A time counter was displayed through the computer screen and triggered when they entered the parking zone for the first time. During this dwell time, if subject maintained the cart position successfully without overshooting outside the parking zone, a prompt “start to the next trial” appeared on the computer screen, and the next trial began. Otherwise, the time counter restarted at every overshoot, and the additional overshooting time was added to the movement time as a penalty.

C. Participants

Nine subjects (3 females and 6 males whose age vary between 20 and 40 with an average of 26) participated in the experiment. Subjects gave informed consent about their
participation in the experiment. The experimental study was approved by the Ethical Committee for Human Participants of Koc University.

D. Experimental Design

The experiment was designed to imitate Fitts’s reaching movement task [41]. Fitts’s reaching task requires a rapid movement from a starting point to a target area. This task is designed specifically to investigate speed-accuracy trade-off characteristics of human muscle movement with some analogy to Shannon’s channel capacity theorem. As the aim in most co-manipulation tasks such as ours is to reduce human effort while maximizing manipulation accuracy, Fitts’s reaching task offers utilization of well-established measures to characterize task performance. In particular, a linear relationship between movement time MT and index of task difficulty ID has been suggested by Fitts [41], MT = a + b · ID. The empirical coefficients a and b depend on environment and controller. The index of difficulty (in bits) is a function of reaching distance and parking zone, respectively [19]. The movement time MT was quantified by measuring the time starting from the desired gain profile for C1 relies on three critical values; a nominal admittance gain Gnom, the permissible maximum amplification gain Gmax and the effect of time constant on the performance of our pHRI system. In our experiment, we used an admittance controller utilizing the proposed adaptive force amplification gain profile with six different time constants, including values below and above τa opt. These conditions are labeled as τ1, τ2, τ3 (= τa opt), τ4, τ5, and τ6, corresponding to the time constant values of 0.03, 0.04, 0.054, 0.08, 0.1, and 0.2, respectively. For a given nominal admittance gain Kc = 0.0167, the permmissible maximum amplification gain Gmax H for each admittance time constant was obtained from the gain margin plot (Fig. 6) as 1.78, 2.18, 2.68, 2.46, 2.37, and 2.17 for τ1, τ2, τ3, τ4, τ5, and τ6, respectively. For all conditions, the desired profile of the adaptive controller starts from the same nominal amplification gain Gnom H = 1 and ends at the same minimum amplification (i.e., maximum attenuation) gain Gmin H = 0.33. Other parameters are taken as α = 20, ∆t = 0.008 s.

In this experiment, each experimental condition was repeated 8 times for each parking width W given in Table I. Thus, there were a total of 288 (6 conditions × 6 parking widths × 8 repetitions) trials in the experiment. Each subject conducted the experiment in four sessions; 72 (6 conditions × 6 parking widths × 2 repetitions) trials per session. The trials of each session were randomized while the same order was displayed to each subject. In addition, subjects were given a training set of 12 (6 conditions × 2 parking widths × 1 repetition) trials prior to each session.

E. Performance Measures

We used the average power consumed by subject (Pave = 1/(tj − ti) t ij fH(t)v(t)dt), average force applied by subject (Fave H = 1/(tj − ti) t ij fH(t)dt) [33], average force applied by robot to move the cart (Fave R = 1/(tj − ti) t ij fH(t)dt), average velocity of the cart (Vave = 1/(tj − ti) t ij v(t)dt), and the movement time MT as measures to evaluate the task performance. In the expressions above, ti and tj were the time when the cart velocity just exceeded 2% of the maximal velocity of the trial and the time when the cart entered the parking zone, respectively [19]. The movement time MT was quantified by measuring the time starting from ti till finishing the trial after removing the dwell time [19].

We calculated the ratio, η = Fave R / Fave H, to evaluate the relative force contribution of the robot to the task. Moreover, to evaluate the parking accuracy, we calculated the parking overshoot, which was, for a single trial, the number of times the manipulated object left and reentered the target zone during parking before the trial was finished successfully [19]. Then, parking overshoot was computed for each subject by summing up the number of reentries for all trials of that subject for each ID divided by the total number of trials of that ID.

F. Regarding Q1: Verification of the optimum time constant

As the theoretical analysis in the previous section has shown, there is an optimal time constant, τa opt, that maximizes the amplification capacity of human force. In this section, we report the empirical evidence to support this finding. We designed an experimental study to investigate the effect of time constant on the performance of our pHRI system. In our experiment, we used an admittance controller utilizing the proposed adaptive force amplification gain profile with six different time constants, including values below and above τa opt. These conditions are labeled as τ1, τ2, τ3 (= τa opt), τ4, τ5, and τ6, corresponding to the time constant values of 0.03, 0.04, 0.054, 0.08, 0.1, and 0.2, respectively. For a given nominal admittance gain Kc = 0.0167, the permissible maximum amplification gain Gmax H for each admittance time constant was obtained from the gain margin plot (Fig. 6) as 1.78, 2.18, 2.68, 2.46, 2.37, and 2.17 for τ1, τ2, τ3, τ4, τ5, and τ6, respectively. For all conditions, the desired profile of the adaptive controller starts from the same nominal amplification gain Gnom H = 1 and ends at the same minimum amplification (i.e., maximum attenuation) gain Gmin H = 0.33. Other parameters are taken as α = 20, ∆t = 0.008 s.

In this experiment, each experimental condition was repeated 8 times for each parking width W given in Table I. Thus, there were a total of 288 (6 conditions × 6 parking widths × 8 repetitions) trials in the experiment. Each subject conducted the experiment in four sessions; 72 (6 conditions × 6 parking widths × 2 repetitions) trials per session. The trials of each session were randomized while the same order was displayed to each subject. In addition, subjects were given a training set of 12 (6 conditions × 2 parking widths × 1 repetition) trials prior to each session.

G. Regarding Q2: Comparing the proposed adaptive gain profile with the other profiles suggested in the literature

To investigate the potential benefits of proposed admittance controller with adaptive force scaling utilizing the proposed gain profile (labelled as C1), we compared it with two different admittance controllers; C2 and C3 (see Fig. 8). Note that Kc = 0.0167 and τa opt = 0.054 were used as the nominal admittance parameters in all controllers. As shown in Fig. 4d, the desired gain profile for C1 relies on three critical values; first, the nominal force scaling gain Gnom H, which is the value at the start of motion. Second is the maximum force scaling gain Gmax H, which is obtained from the gain margin plots in Fig. 6. The last is the minimum force scaling gain (i.e., maximum attenuation) Gmin H, which is used during the parking phase. In our implementation of the gain profile for C1, the values given in Table II were utilized.

In addition to the controller given above, we explored the effect of different gain profiles suggested in the literature on the task performance. These alternative profiles, C2 and C3,
have been suggested in the literature to adjust the dissipation capacity of an admittance controller by varying the admittance damping. In C2, which was adopted from the earlier studies in [22]–[25], the amplification (attenuation) occurs only during the acceleration (deceleration) (see Fig. 8). Although the force scaling gain varied between the maximum $G_{H_{\text{max}}}^H$ and minimum $G_{H_{\text{min}}}^H$ values in C2, the nominal value (i.e., $G_{H_{\text{nom}}}^H$) was used during both the starting and parking phases. On the other hand, C3, which was adopted from the studies in [13] and [26], represents a gain profile where high amplification was provided to the operator during the driving phase (see Fig. 8) though $G_{H_{\text{nom}}}^H$ was used during both the starting and parking phases.

In summary, three controllers were tested in this experiment utilizing different adaptive gain profiles (C1, C2, and C3). Each controller case was repeated 8 times for each parking width W given in Table I. Thus, there were a total of 144 (3 controllers x 6 parking widths x 8 repetitions) trials in the experiment. Each subject conducted the experiment in four sessions; 36 (3 controllers x 6 parking widths x 2 repetitions) trials per session. The trials of each session were randomized while the same order was displayed to each subject. In addition, subjects were given a training set of 6 (3 controllers x 2 parking widths x 1 repetition) trials prior to each session.

H. Data Analysis:

The performance measures defined in Sect. V-E were computed and the means and standard errors of the means were evaluated. All dependent variables (i.e., measures) were tested for normality using the Shapiro–Wilk test. We found that the distribution was non-normal for some of the measures. Normalizing transformations were applied to the measures as suggested in [43]. A two-way ANOVA was conducted to examine the effects of index of difficulty (ID) and admittance time constant (τ) regarding Q1, and controller type regarding Q2, on each performance measure. A significance level of $p = 0.05$ was used to test the null hypothesis in the statistical analysis.

Regarding Q1:

There was a statistically significant interaction between ID and τ on parking overshoot and movement time (MT). Therefore, we examined the simple main effects of ID and τ on both parking overshoot and MT. On the other hand, no significant interaction was observed between the effects of ID and τ on $F_{H_{\text{ave}}}^H$, η_{ave}, and V_{ave}. So, we selected the Tukey post-hoc test to investigate the effect of admittance time constant τ on these measures. The mean values of subjects for all measures are reported in Figs. 9 and 10.

Regarding Q2:

In the analyses, we found a significant interaction between the experimental factors (ID and controller type) for all measures. Therefore, further analysis was performed to evaluate the individual simple main effects of ID and controller type. Fig. 11 illustrates the results of our second experiment which was designed to compare the proposed gain profile (C1) with the ones proposed in the literature (C2 and C3).

I. Results and Discussion:

Regarding Q1:

Figs. 9a, 9b, 9c, and 9d report the average force applied by subjects $F_{H_{\text{ave}}}^H$, the relative force contribution of the robot η, average power consumed by subjects P_{ave}, and average velocity of the cart V_{ave} for six admittance time constants t_1, t_2, t_3, t_4, t_5, and t_6.

1. HAMAD et al.: ADAPTIVE HUMAN FORCE SCALING VIA ADMITTANCE CONTROL FOR PHYSICAL HUMAN-ROBOT INTERACTION 757

![Fig. 8. Representative gain profiles for the controllers tested in our study. C1 is the proposed adaptation gain profile, while C2 and C3 are similar to the profiles resulted from the adaptive approaches introduced in [22]–[25], and [13, 26], respectively. Please note that the gain profiles C2 and C3 for force scaling are mirror images of the damping profiles suggested in the related references.](image)

![Fig. 9. The means and standard errors of the means of the performance measures: (a) average force applied by subjects $F_{H_{\text{ave}}}^H$, (b) relative force contribution of the robot η, (c) average power consumed by subjects P_{ave}, and (d) average velocity of the cart V_{ave} for six admittance time constants t_1, t_2, t_3, t_4, t_5, and t_6.](image)

Table II: Parameter Values for the Controller C1

<table>
<thead>
<tr>
<th>$K_{\alpha_{\text{opt}}}^{\text{opt}}$</th>
<th>$G_{H_{\text{nom}}}^H$</th>
<th>$G_{H_{\text{max}}}^H$</th>
<th>$G_{H_{\text{min}}}^H$</th>
<th>α</th>
<th>Δt</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.0167, 0.054)</td>
<td>1</td>
<td>2.68</td>
<td>0.33</td>
<td>20</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Fig. 8: Representative gain profiles for the controllers tested in our study. C1 is the proposed adaptation gain profile, while C2 and C3 are similar to the profiles resulted from the adaptive approaches introduced in [22]–[25], and [13, 26], respectively. Please note that the gain profiles C2 and C3 for force scaling are mirror images of the damping profiles suggested in the related references.
on top indicates statistical significance between the results of under C3 was significantly higher than those of C1 and C3 for each ID. As expected, movement time MT depicted in Fig. 10b showed that subjects completed the task significantly slower under \(\tau_0 \) than those of \(\tau_1-\tau_5 \), especially at higher ID. Although subjects were moving in a relatively similar speed under all time constants considered in this experiment (see Fig. 9d), they completed the task with more overshoots under \(\tau_0 \) compared to those of the others, which led to longer MT.

As shown in Figs. 9a-9c, \(\tau_3 \) transcended \(\tau_1, \tau_2, \tau_4, \tau_5, \) and \(\tau_6 \) in terms of \(F_{HR}^a, \eta, \) and \(P_{ave} \). These experimental results support our theoretical analysis in Section IV and our claim that there is an optimal time constant (\(\tau_3 = \tau_{opt}^a \)) maximizing the human force amplification.

This experiment also highlighted the difference in the performance between the conditions of low and high time constant. For instance, \(\tau_2 = 0.04 \) and \(\tau_6 = 0.2 \) have almost the same allowable force amplification of 2.18 and 2.17, respectively. However, the results depicted in Figs. 9 and 10 showed that \(\tau_2 \) significantly outperformed \(\tau_6 \) in all performance measures since increasing the time constant reduces the response speed of an admittance controller. As a result, an object having a high inertia cannot be accelerated easily [25], requiring more effort from human operator. Furthermore, once the object is accelerated, it is difficult to decelerate it as well. Hence, overshoot during parking is unavoidable.

Regarding Q2: Figs. 11a and 11c depict the average force applied by subjects, \(F_{HR}^a \), and the relative force contribution of the robot to task, \(\eta \), respectively. \(F_{HR}^a (\eta) \) under C1 was significantly lower (higher) than those of C2 and C3 for each ID. The average force applied by robot, \(F_{HR}^{ave} \), is plotted in Fig. 11b. \(F_{ave}^{HR} \) under C2 was significantly lower than those of C1 and C3 for each ID. However, \(F_{ave}^{HR} \) under C3 was significantly higher than that of C1 for ID = 4. The average velocity of the cart, \(V_{ave} \), is plotted in Fig. 11d. \(V_{ave} \) under C2 was significantly lower than those of C1 and C3. Fig. 11e illustrates the average power consumed by subjects, \(P_{ave} \), which was significantly lower under C1 than those of C2 and C3 for ID = 4. Fig. 11f reports the results for parking overshoot. Parking overshoot under C2 was significantly higher than those of C1 and C3 for ID = 6. As shown in Fig. 11g, the movement time MT under C2 was significantly higher than those of C1 and C3 for ID = 6. As we observed that subjects completed the task with higher MT under C2 than those of C1 and C3 for all IDs (see Fig. 11h). This is because C2 resulted in higher dissipation than C1 and C3 (see Fig. 8), which caused the robot to resist the movements of subjects, and hence an increase in task duration. Moreover, the index of performance IP under C2 was lower than those of C1 and C3 (see Table IV), which showed that less information per unit time was transmitted to subjects to perform the task successfully under C2 than those of C1 and C3.

Fig. 11c shows that the relative force contribution of robot to task, \(\eta \), was significantly higher under C1 than those of C2 and C3 for each ID, which indicates that subjects applied less force to move the cart under C1. Fig. 11d shows that subjects moved the cart with higher velocity under C1 and C3 than that of C2 for each ID. Since the effort made by subjects is quantified as force times velocity,
subjects put significantly less effort under C1 than those of C2 and C3. Moreover, parking accuracy under C2 was lower than those of C1 and C3 when index of difficulty was high since the gain profile of C2 ends with a non-conservative gain value (i.e., G_{nom}^H), causing a lower dissipation than those of C1 and C3. C1 and C3 allowed subjects to end the task with the maximum attenuation gain G_{min}^H, which provided more dissipation at the parking phase to position the cart accurately (see Fig. 8).

VI. DISCUSSION

To summarize above, the results of the experiments provide us with satisfactory answers to the research questions (Q1 and Q2) posed at the beginning of Section V.

Specifically, adaptive force scaling controller utilizing $t_3 = r_{opt}^H$ significantly outperformed those under t_1, t_2, t_3, t_5, and t_6 in terms of P_{ave}^H, η^H, and P_{ave}^{ν}. Hence, empirical evidence for an optimum admittance time constant was provided, which reinforce our theoretical analysis in Section IV.

![Fig. 11. Mean values of the performance measures for three different IDs under three different controllers C1 (our proposed controller), C2, and C3. Error bars are the standard errors of means and horizontal bracket with * on top indicates statistical significance between the results of the two corresponding controllers.](image-url)

<table>
<thead>
<tr>
<th>Conditions</th>
<th>a</th>
<th>b</th>
<th>$IP\ (1/b)$</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0.133</td>
<td>0.375</td>
<td>2.67</td>
<td>0.99</td>
</tr>
<tr>
<td>t_2</td>
<td>0.014</td>
<td>0.392</td>
<td>2.55</td>
<td>0.99</td>
</tr>
<tr>
<td>t_3</td>
<td>0.041</td>
<td>0.378</td>
<td>2.64</td>
<td>0.98</td>
</tr>
<tr>
<td>t_4</td>
<td>0.273</td>
<td>0.334</td>
<td>2.99</td>
<td>0.97</td>
</tr>
<tr>
<td>t_5</td>
<td>0.151</td>
<td>0.369</td>
<td>2.71</td>
<td>0.98</td>
</tr>
<tr>
<td>t_6</td>
<td>-0.266</td>
<td>0.483</td>
<td>2.07</td>
<td>0.98</td>
</tr>
</tbody>
</table>

![Fig. 12. Cart velocity v, force applied by human f_H, its derivative \dot{f}_H, and adaptive gain G_{Hi}, as functions of time for exemplary trials of one subject under the controllers of (a) C1 (our proposed controller), (b) C2, and (c) C3.](image-url)

Table III

<table>
<thead>
<tr>
<th>Controller</th>
<th>a</th>
<th>b</th>
<th>$IP\ (1/b)$</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.045</td>
<td>0.363</td>
<td>2.75</td>
<td>0.98</td>
</tr>
<tr>
<td>C2</td>
<td>-0.28</td>
<td>0.478</td>
<td>2.09</td>
<td>0.96</td>
</tr>
<tr>
<td>C3</td>
<td>0.15</td>
<td>0.335</td>
<td>2.98</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Moreover, in terms of the gain profile, adaptive admittance gain used in C1 is more desirable than those suggested in the literature (C2 and C3). In particular, the proposed profile results in lower F_{ave}^H and P_{ave}^{ν} and higher η than those calculated for C2 and C3. In addition, parking accuracy under C1 was better than that of C2, whereas C1 and C3 performed similarly, as anticipated. When the effort made by subjects to move the cart and parking accuracy are considered together, C1 outperformed C2 and C3.

Fig. 12a shows the actual gain profile recorded for one subject under the controllers of (a) C1 (our proposed controller), (b) C2, and (c) C3.
combines human intention and the different requirements of task phases as proposed in this study.

As shown in Fig 12a, the scaling gain increased from its nominal value till it reached its permissible upper limit during the driving phase, allowing maximum assistance to the subject for acceleration. Once a deceleration intention of the subject was detected, the gain gradually decreased to a minimum value (i.e., maximum attenuation), allowing the subject to decelerate the cart. As soon as the parking started, a high level of attenuation for the force was already reached, allowing the subject to park the cart more accurately.

Altering the gain in real-time can pose a threat in terms of stability if the instantaneous change in gain is too abrupt. There is a passivity approach suggested in the literature [45] to monitor the energy exchange during real-time pHRI. In Fig. 13, we present the estimated energy exchange for all trials of one subject and also the average of all subjects under the proposed controller C1. This figure illustrates that the monitored energy never goes below zero in any of the trials, and hence the passivity is maintained.

Finally, although there are no particular restrictions in applying the proposed approach to more realistic pHRI scenarios involving point-to-point manipulation of objects in 3D space, tuning in some parameters may be required depending on the task. In the future, we plan to work on a 3D co-manipulation task in which a user and robot lift a heavy object on the task. In the future, we plan to work on a 3D co-manipulation task. Moreover, the results of the second set of experiments suggested that the proposed profile for gain adaptation is superior to the ones proposed in the literature for the same purpose. In addition, the linear relation obtained between the movement time MT and the index of difficulty ID in both experiments suggested that Fitts’s law is also valid for a pHRI task involving co-transportation of an object. In the future, we aim to test our approach in more realistic pHRI scenarios involving contact interactions with an environment to further demonstrate its potential in industrial applications [35][46]. Instead of using a rail system, virtual fixtures can be utilized to constrain the movements of manipulated object in those scenarios.

ACKNOWLEDGMENT

Yahya M. Hamad acknowledges University of Baghdad for financially supporting him during his PhD studies. The Scientific and Technological Research Council of Turkey (TUBITAK) supported this work under contract EEEAG-117E645.

REFERENCES

Yahya M. Hamad received the B.Sc. and M.Sc. degrees from the University of Baghdad, Baghdad, Iraq, in 1997 and 2000, respectively, both in mechanical engineering. He is currently working toward the Ph.D. degree with the Mechanical Engineering Department, Koc University, Istanbul, Turkey. His research interests include robotics, physical human-robot interaction, and applied mechanics.

Yusuf Aydin (Member, IEEE) received the B.Sc. dual degrees in mechanical engineering and electrical and electronics engineering, the M.Sc. degree in mechanical engineering, and the Ph.D. degree in mechanical engineering from Koc University, Istanbul, Turkey, in 2011, 2013, and 2019, respectively. He is currently a Faculty Member with the Electrical and Electronics Engineering Program, MEF University, Istanbul, Turkey. Before joining MEF University, he was a Postdoctoral Research Fellow with Robotics and Mechatronics Laboratory, Koc University. His research interests include physical-human-robot interaction, haptics, robotics, control, optimization, and mechatronics. He was the recipient of the prestigious TUBITAK GEBEDI Fellowship for his graduate studies.

Cagatay Basdogan (Member, IEEE) received the Ph.D. degree in mechanical engineering from Southern Methodist University, Dallas, TX, USA, in 1994. He is currently a Faculty Member with the Mechanical Engineering and Computational Sciences and Engineering Programs, Koc University, Istanbul, Turkey. He is also the Director of Robotics and Mechatronics Laboratory, Koc University. Before joining Koc University, he was with NASA/JPL/Caltech, MIT, and Northwestern University Research Park. His research interests include haptic interfaces, robotics, mechatronics, biomechanics, medical simulation, computer graphics, and multimodal virtual environments. He was an Associate Editor in Chief of the IEEE TRANSACTIONS ON HAPTICS and is currently on the Editorial Boards of the IEEE TRANSACTIONS ON MECHATRONICS, PRESENCE: Teleoperators and Virtual Environments, and Computer Animation and Virtual Worlds Journals. In addition to serving in program committees and organizational committees of several conferences, he chaired the IEEE World Haptics Conference in 2011.