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EXECUTIVE SUMMARY 

 
CONVOLUTIONAL NEURAL NETWORK FOR FACIAL EMOTION RECOGNITION 

WITH GEOMETRICAL FEATURES OF FACE 
 

İlker Arslan 
 

 
Advisor: Asst. Prof. Tuna Çakar 

 
 

JUNE 2021, 51 pages 
 
 
 
One of the recent challenging machine learning problems is to make predictions on 

image datasets. The aim of the project is to construct a convolutional neural network to guess 
emotions for a face of a human given in an image file considering the face. After the geometrical 
features are extracted using pretrained models, we construct five models which are 
convolutional networks fed with handcrafted geometrical features extracted. The last model 
uses the outputs of other four models to predict more accurately. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key Words:  Facial emotion recognition, convolutional neural network, AffectNet. 
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ÖZET 

 
YÜZÜN GEOMETRİK ÖZELLİKLERİYLE YÜZSEL DUYGU TANIMASI İÇİN 

EVİRİMŞİMSEL SİNİR AĞLARI 
 

İlker Arslan 
 

 
Proje Danışmanı: Dr. Öğr. Üyesi Tuna Çakar 

 
 

HAZİRAN, 2021, 51 sayfa 
 
 
 
Son zamanlardaki en zorlu makine öğrenmesi problemlerinden biri resim dosyaları 

üzerinde tahminlerde bulunmaktır. Projenin amacı evrişimli sinirsel ağları kullanarak resim 
dosyasındaki resmi verilmiş insan yüzünü değerlendirerek resimdeki insanın duygu durumunu 
tahmin etmeye çalışmaktır. Daha önceden eğitilmiş modelleri kullanarak yüzün geometric 
özellikleri çıkartıldıktan sonra bu özelliklerle beslenene beş tane evirişimli sinirsel ağ 
yapılandırılmıştır. Son model daha iyi bir tahminde bulunmak için diğer dört modelin 
sonuçlarını kullanmıştır. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Anahtar Kelimeler:  Yüzsel duygu durumu, evirimşel sinirsel ağ, AffectNet. 
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  1. INTRODUCTION 

Making predictions on the image files is one of the most popular and important 

challenging problems among all artificial intelligence problems. The main issues can vary from 

detecting specific pictures of objects inside the image files such as cars, human faces, parts of 

nature, etc to extract stories of what is happening in those pictures such as car crashes, natural 

disasters, etc. One of the famous models to solve these is convolutional neural networks (CNN), 

which are especially specific to be successful at learning images. In this project, we try to 

estimate the probabilities of different emotions of a human-being face given in an image file 

which is a pretty challenging problem. There are eight emotions which are ‘happiness, sadness, 

surprise, fear, disgust, anger, contempt, neutral’ and another category of image ‘no-face’, where 

‘no-face’ means that there is no person shown up in the image. Although there are more than 

these emotion types and even more complex ones, we worked on these eight because it gets 

harder to detect when you add more types especially if they seem to be close to other types. For 

example, ‘happiness’ and ‘surprise’ or ‘disgust’ and ‘contempt’ sometimes seem to be 

confusing to distinguish even to a person looking at the image on the screen. 

1.1. On Applications of Facial Emotion Recognition (FER)  

Detecting the mood/state of a person is important for automated human-interacted 

systems to mimic the interactions between two people and is used for commercial aims. For 

instance, the application ‘iMotions’ uses its face emotion recognition algorithm(s) to extract 

information and has products (iMotions). Another application is that there are serious 

discussions on the study of FER about how FER may indicate early warnings of neurological 

diseases to be diagnosed and treated (Pietschnig J. et al, 2016). An interesting example is that 

there are works on micro-expressions, which are repressed, of human faces to detect lies as well 

as detecting emotions of drivers for dealing with fatigue states (N. Rodrigez-Diaz et al, 2021), 

(Z. Kowalczk et al, 2019).  

1.2. About Works Through Comparison of Extracting Hand-crafted Features and Deep 
Learnt Features 

In this section, we go through the survey (S. Li et al, 2019) for a brief history and 

methods of research on FER. Afterwards, we will present some of the details of the deep 

learning methods applied in (Dunau P. et al, 2019), (G. Viswanatha Reddy et al, 2020), (M. A. 

Jalal et al, 2019). 
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In (S. Li at al, 2019), the authors mention that the learning methods for FER were usually 

based on handcrafted features until the competitions such as FER2013 and Emotion 

Recognition in the Wild (EmotiW) leading to adequate data for deep learning methods to be 

applied for FER. Recently known databases presented in (S. Li at al, 2019) are CK+, MMI, 

Oulu-CASIA, JAFFEE, FER2013, AFEW, SFEW, Multi-PIE, BU-3DFE, BU-4DFE, 

EmotioNet, RAF-DB, AffectNet, ExpW, 4DFAB. These datasets can differ in many aspects, 

such as, of the number of images, the way they are annotated (manually of automated), the 

number of different subjects used, the number of emotional expressions to label images, the 

sources from which they created (internet, lab, movie, …). As an instance, the dataset AffectNet 

has two groups of image files which are imported from the web sources using search algorithms. 

One group is annotated manually having 420,229 images and the other group is annotated 

automatically and has 550,000 images. The number of labels is eleven and they are ‘neutral, 

happiness, sadness, surprise, fear, disgust, anger, contempt, none, uncertain, no-face’. Each 

image is also provided with their valence and arousal features. Valence property is about how 

positive or negative the image is and arousal property is about how intense the emotion is. These 

two are represented by values between -1 and 1 and by -2 for uncertain and no-face categories. 

The authors of (G. Viswanatha Reddy et al, 2020) mention that this dataset is labelled by 12 

expert human annotators at the University of Denver and In the documentation of AffectNet, it 

is said ResNext Neural Network is used for automatic annotation trained on the manually 

annotated training set samples with average accuracy of 65%. The 68 facial landmarks are also 

given corresponding to each image together with the position of boxes in which faces are 

located. 

The authors in (S. Li at al, 2019) emphasize three important data preprocessing steps 

which are face alignment, data augmentation, and face normalization. Face alignment is said to 

be crucial in terms of its effect on performance and efficiency. Data augmentation is said to be 

for obtaining sufficient data and generalizing, which may be made through cropping, flipping 

horizontally, random perturbations (such as shifting up/down, rotations, skew, scaling, noise, 

…). Lastly, in order to prohibit variations in illuminations and head poses, facial normalization 

is applied according to (S. Li at al, 2019).  

An example of a method based on handcrafted features is treated in the conference paper 

(Dunau P. et al, 2019) by considering angle and size information extracted from the image. 

They carried the process of learning from an image sequentially getting the features and 

classifying emotions only based on the features extracted. The features extracted are angles and 

lengths/sizes which are formulated geometrically in terms of the location of landmarks obtained 
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from ‘dlib’, the facial landmark detector (King, Davis E., 2009). They used Generalized 

Procrustes Analysis (GPA) to get the appropriate set of landmark features to be used 

comparatively with another set of features, what they call as ASF (Angle and Size Features), 

obtained by geometrical results from locations of eyes and mouth. They apply PCA for each of 

the set of features before they are classified by the multilayer perceptron (MLP). The emotions 

to be classified are anger, disgust, fear, happiness, sadness, and surprise which are, in total, six. 

The below figure captured from (Dunau P. et al, 2019) is their accuracies for both of the set of 

the features. 

 
Figure 1: Accuracies presented in (Dunau P. et al, 2019). 

  

Contrary to (Dunau P. et al, 2019), the authors of the paper (M. A. Jalal et al, 2019) 

propose convolutional neural networks integrated with a self-attention mechanism without any 

handcrafted feature extracting.  What they claim as a reason why they use a self-attention 

network is to take the relationships between the regions in the feature maps from previous layers 

into account. That would give clues about the positions of sub-regions regarding the other 

subregions within one image. Below is the figure for the architecture they constructed. 
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Figure 2: The architecture of the model presented in (M. A. Jalal et al, 2019). 

 

 Inside the self-attention network in the above figure, they map features to three spaces 

j, k and l as  

𝑗(𝑦) = 𝑊'𝑦, 𝑘(𝑦) = 𝑊*𝑦, 𝑙(𝑦) = 𝑊,𝑦 

where y is the feature from the previous layers and 𝑊',𝑊*,𝑊,  are weights to be trained through 

back-propagation, then a matrix e is evaluated composed with the softmax function as each 

entry is calculated as follows  

𝑒.' = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 6𝑗(𝑦.)7𝑘8𝑦'9: 

and the outputs are  

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛	_	𝑜𝑢𝑡𝑝𝑢𝑡 = g8𝑒. 𝑙(𝑦)9 + 𝑦 

where g is set to be randomly initialized and the ‘dot’ represents the matrix multiplication. 

 The authors of (M. A. Jalal et al, 2019) considered 8 categories of emotions (neutral, 

happy, sad, surprise, fear, disgust, anger). They chose approximately 13000 images for each 

category from the dataset AffectNet for training and the test data has 500 images for each 

category. Furthermore, they augmented the data by applying horizontal flipping and random 

cropping to increase the diversity and normalized and resized them. The number of epochs they 

run is about 700 and their accuracy on the validation set is claimed to be 93.8%. 

 Another paper (G. Viswanatha Reddy et al, 2020) proposes a combined method in which 

both convolutional neural network and handcrafted feature extracting are used. However, 

instead of using the given facial landmark information and face region information in AffectNet 
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they used the implementation presented in (V. Kazemi and J. Sullivan, 2014) for landmark 

detection and Faster RCNN (S. Ren, 2017) for extracting the face region. Afterwards, they 

calculated all possible distances between these 68 landmarks. The number of distances is 6682 : 

which is 2278. The deep learnt features are obtained by a model, where they made use of the 

last convolutional layer features of XceptionNet to get 2048 features. Then, they concatenate 

these two feature vectors (having 4326 components in total) and to reduce the dimension by 

Principal Component Analysis (PCA). They end the model up with a SVM (Support Vector 

Machine) classifier. Furthermore, they presented the results with three distinct classifiers as 

SVM, SVM with Radial Basis Function (RBF), and Neural Net. Their accuracies captured from 

(G. Viswanatha Reddy et al, 2020) are shown below. 

 
Figure 3: The accuracies from (G. Viswanatha Reddy et al, 2020). 

 

Below is the figure of the whole procedure they carried and presented in (G. Viswanatha 

Reddy et al, 2020). 
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Figure 4: The architecture from (G. Viswanatha Reddy et al, 2020). 

 

The authors (G. Viswanatha Reddy et al, 2020) have done their experiments on the 

dataset AffectNet which has highly unbalanced number of (manually annotated) images per 

categories (neutral: 75,374; happy: 134,915; sad: 25,959; surprise: 14,590; fear: 6,878; disgust: 

4,303; anger: 25,382; contempt: 4,250; none: 33,588; uncertain: 12,145; non-face: 82,915). In 

order to avoid this bias over 11 categories they sampled 10,000 images from each class using 

the data augmentation techniques, where the classes having less than 10,000 images remained 

the same. 
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1.3. Usage of Transfer Learning In FER  

As well known, models of neural networks are actually pretty complex compositions of 

linear and/or often nonlinear multivariable functions with lots of parameters (weights/variables) 

defined by them. Convolutional neural networks may also be pretty much complicated in terms 

of its (activation) functions which are possibly non-linear, non-convex (such as sigmoid) even 

non-smooth (such as Relu). More or less, a layer of a convolutional neural network may be 

considered as one of the functions which are composed to build that model. The more nodes 

(neurons) lead to higher number of weights (variables of the functions which are composed). 

The backpropagation process is designed to update these weights to minimize the loss function, 

that is the distance, defined by various metrics, between model evaluations (outputs of models) 

and exact target values. The point is that the backpropagation slows down by consuming much 

time when the number of weights is high and most of the recent problems need a large number 

of weights. In addition to the high number of weights, training is done with numerous epochs 

because the loss functions in complex models are probably not easy to optimize due to loss 

functions dependent on non-linear/non-convex activation functions, in particular, for 

convolutional neural networks. One may think that if a successful convolutional neural network 

model is trained by so much effort, it may be used for other tasks as well. This usage is, what 

is called, “transfer learning”. Transfer learning is one of the popular techniques used in FER 

(Akhand, M. A. H., et al. 2021), (Ng, H., et al. ,2015). Transfer learning is a very efficient way 

at creating models which are (partially or thoroughly) derived from pretrained models and 

explained in more abstract mathematical terms (Zhuang F. et al., 2019).  

Basically, transfer learning is to make use of the parameters of a pretrained model 

possibly extracting from some of the weights (in convolutional neural networks they may be 

from some critical layers) or the whole architecture of it or a part of its architecture in solving 

another problem based on different tasks or target domains. To give a specific discussion on an 

instance, the authors of (Akhand, M. A. H., et al., 2021) say that the first layers record simple 

features (such as edges and corners) of an image while the next layers keep complex features 

(such as textures and shapes) of it. What they claim is, in other words, the deeper layer of a 

convolutional neural network the more complicated features it carries. They think that the basic 

features are similar to all images (for FER problems). So, they used the first convolutional 

layers of a model called VGG-16 and trained it with another fine-tuned dense layer (Akhand, 

M. A. H., et al., 2021) for their proposed model. The figure below picture captured is their 

architecture. 
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Figure 5: An architecture in which transfer learning is used 
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2. THE DATA PREPROCESSING AND THE FEATURES EXTRACTED 

We trained our model(s) presented in the next section by the data from AffectNet. The 

dataset of AffectNet is divided into two groups, as mentioned in the previous section, one of 

which is manually annotated and of 420,299 images. We used the manually annotated dataset. 

In fact, we made use of a subset of the dataset. The reason for why we could not use the whole 

data is that the AffectNet has images labelled so that the number of images for each class is 

unbalanced and we ignored the categories ‘none’ and ‘uncertain’ and the features we want to 

extract restricted a little bit more for technical reasons explained later in this section. 

 Firstly, we extracted the 68 facial landmarks from the Python ‘dlib’ library for each 

image instead of using the facial landmarks provided in the AffectNet due to a comparative 

experiment between ‘dlib’ library and the given facial landmarks from AffectNet that ‘dlib’ 

seemed more accurate just by manually checking. An example of comparison is below 

presented. 

 
Figure 6: The picture on the left with landmarks from dlib library and the picture on 

the right with landmarks from the AffectNet. 

We wanted to evaluate the angles of triangles that have corners as a triple of landmarks. 

However, there are, in total, 3 6683 : angles which are excessively much. We assumed that some 

of the landmarks are not flexible when relatively compared to other landmarks. In other words, 

when someone changes his/her face, some of the landmarks are thought to be constant, but the 
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others. For an instance to explain this issue let us have a look at the following landmarks plotted 

on a face which are supposed to be given by the ‘dlib’ library. 

 
Figure 7: The 68 facial landmarks 

In the figure above, we divided the set of all landmarks into two groups one of which is 

that {0, 1, 2, 7, 8, 9, 14, 15, 16, 27, 28, 29} considered to be constant and the other group of 

landmarks {17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 

49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59} considered to be active ones. The supposition is that 

emotions react to these defined landmarks more than the ones which are said to be constant. 

We obtained one angle by choosing two constant landmarks and one active landmark thinking 

of them as corners of a triangle. For example, if we choose the numbers 0 and 1 from the list of 

constant landmarks and the number 17 from the list of active landmarks, we consider the cosine 

of the angles between the line joining the landmarks 0 and 17 and the line segment joining the 

landmarks 1 and 17. Cosine values of the angles are calculated by the formula: 

cos(q) =< 𝑥, 𝑦 >/(M|𝑥|M. M|𝑦|M), 

where 𝑥 is the vector with initial position at one landmark and terminal position at other 

landmark, similarly for y,  M|𝑥|M and M|𝑦|M are the norms (lengths) of these vectors and q is the 

angle between these two vectors.  

In addition to angle features we also considered the 5 ratios of the distance between the 

landmarks 3 and 48 over the distance between the landmarks 3 and 60; the distance between 

the landmarks 13 and 54 over the distance between the landmarks 13 and 64; the distance 

between the landmarks 61 and 67 over the distance between the landmarks 50 and 58; the 

distance between the landmarks 63 and 65 over the distance between the landmarks 52 and 56; 
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the distance between the landmarks 62 and 66 over the distance between the landmarks 51 and 

57.  

The number of angle features and ratio features is in total 2385. We concatenated all 

these angle and ratio features and applied Principle Component Analysis (PCA) with output 

carrying 95% information of these features. PCA leads to the fact that the number of all of these 

features reduces to 33 features. 

We observed that the number of the images labelled as ‘contempt’ is 4,250 which is the 

minimum among the other images (neutral: 75,374; happy: 134,915; sad: 25,959; surprise: 

14,590; fear: 6,878; disgust: 4,303; anger: 25,382; contempt: 4,250; none: 33,588; uncertain: 

12,145; non-face: 82,915). In order to prevent bias training, we randomly chose 4,250 for each 

of the other groups of labelled images. However, due to zero-value errors while calculating the 

cosine values of angles and ratios, we had to eliminate those with this error. The remaining ones 

without such an error occurred in evaluating angle and ratio features are listed as neutral: 3,543; 

happy: 3,630; sad: 3,486; surprise: 3,538; fear: 3,458; disgust: 3,588; anger: 3,458; contempt: 

3,631; none: 3,524; uncertain: 3,489; non-face: 3,022. Furthermore, we ignored the categories 

‘none’ and ‘uncertain’. So, in total, we get 31354 images to train our model. On average, we 

have 3484 images per class. Similarly, the same reasons led to a decrease in the number of test 

data. The test data has, in total, 4223 images and the number of images in the test data varies 

as follows: neutral: 468; happy: 479; sad: 473; surprise: 475; fear: 463; disgust: 479; anger: 

471; contempt: 485; non-face: 430 ignoring the cases labeled as ‘none’ and ‘uncertain’. 

We resized all the images to 100x100 pixels before using ‘dlib’ library. In order to get 

sufficient data we applied augmentation by shifting and rotating to the images randomly. We 

did not apply augmentation to the whole of the data. Instead, we have chosen any one of them 

with a 1/3 probability and applied shifting with ½ probability and rotation with ½ probability. 

The shifting and the rotation are also applied randomly within the procedure. We chose a 

random integer between -15 and 15 (both including) for the amount of shifting (in pixels) 

horizontally and another random integer between -15 and 15 (both including) for the amount 

of shifting (in pixels) vertically. Similarly, we chose a random integer between -30 and 30 for 

the amount of rotation in degrees (counterclockwise if the number is positive and clockwise if 

the number is negative). The resultant number of the images per class after the augmentation is 

as follows; neutral: 4,704; happy: 4827; sad: 4669; surprise: 4,717; fear: 4,602; disgust: 4,798; 

anger: 4,574; contempt: 4,873; non-face: 4,022.  
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3. MODELS CREATED TO BE TRAINED 

We created numerous convolutional neural network models to get best results. We 

considered five of them which were comparatively successful. Each of these four models gave 

accuracies approximately (and very close to) 40% on the validation test. In each of the following 

sections we will present the details of these models. Lastly, another additional model will be 

provided. The last model is a combined version of these four models and leads to an accuracy 

of 43% on the validation set. 

3.1. Model-1 

The model-1 is figured below 

 
Figure 8: The Model-1 

The next table shows the summary of Model-1. 
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Figure 9: Summary of the Model-1 

 

The image file, which is the input-1 shown in the figure above, is given as input after it 

is converted to a ‘numpy array’ which is derived from the Python ‘numpy’ library. In fact, all 

the five models mentioned take the image in this object type and process it. The first layer is a 

convolution layer mapping to 16 neurons with the activation function ‘Relu’ defined as 

𝑅𝑒𝑙𝑢(𝑥) = max(𝑥, 0) for any real number 𝑥. Then, a max pooling layer follows. The next two 

layers follow similarly mapping to 32 and 64 neurons, respectively. All of the max pooling 

layers in the Model-1 evaluate maximum value on 3x3 pixels. Input-2 in the figure above 

corresponds to the feature vector obtained lastly from PCA and has 33 components. This 

handcrafted feature vector is sent to a dense layer with 100 neurons with the activation function 

‘sigmoid’ and the output of convolution layers is sent to a dense layer of 100 neurons. 

Afterwards, they are concatenated and sent to a dense layer of 9 neurons with the activation 

function ‘softmax’. The sigmoid function is defined as follows. 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒WX  

for any real number 𝑥 and the softmax function is defined to be 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥) =<
𝑒XY

∑ 𝑒X[\
.]^

,
𝑒X_

∑ 𝑒X[\
.]^

	 , … ,
𝑒Xa

∑ 𝑒X[\
.]^

>, 

where 𝑥 =< 𝑥^, 𝑥b,… , 𝑥\ > is a vector. The components of 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥) are the outputs of the 

layer which the layer is activated with. Observe that the components are added up to 1 and each 

component is nonnegative. This is interpreted as a probability value for the category. In 
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particular, the last layer in the Model-1 outputs a vector having 9 nonnegative components with 

a sum 1, the value of 𝑛 in the formula of softmax function is set to 9. During the 

backpropagation of the process of training these probabilities are to be as close as possible to 

the real values which constitute actually a vector having 0 at all of its components except the 

one corresponding to the category of the input image, it is 1. 

3.2. Model-2 

The Model-2 is presented in the figure below. 

 
Figure 10: Model-2 

The Model-2 differs from the Model-1 at the number of neurons in two layers. One is 

that the number of neurons in the first dense layer which the input-1 is sent (through the 

convolution layers) to has 60 neurons and the number of neurons in the first dense layer which 

the input-2 is sent (through the convolution layers) to has 40 neurons. As in the Model-1, then 

they are concatenated to be sent to the last dense layer with the softmax activation function. 
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Another distinction is that all of the convolution layers in the Model-2 apply convolution by 

2x2 matrices. Below is the summary of the Model-2. 

 

 
Figure 11: Summary of the Model-2 
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3.3. Model-3 

The Model-3 is presented in the figure below.  

 
Figure 12: Model-3 

 The Model-3 has two convolution layers applyied by 2x2 matrices and the first 

convolution layer is followed by a max pooling over 3x3 pixels and the second convolution 

layer is followed by a max pooling over 2x2 pixels. Furthermore, the dense layer which takes 

the output of the last convolution and the dense layer which takes the handcrafted features has 

50 nodes. 

 
Figure 13: Summary of Model-3 
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3.4. Model-4 

The Model-4 is presented in the figure below. 

 

 
 

Figure 14: Model-4 

 

The Model-4 differs from the Model-3 in that it has 8 and 32 nodes in the convolution 

layers and the dense layers which take the outputs from the convolutional network and the fully-

connected layer which takes the handcrafted features has 60 and 40 nodes, respectively. Note 

that you may ignore the words ‘input_7’ and ‘input_8’ in the figure above, they are input_1 and 

input_2, respectively and they correspond to the same input values (images and features) as in 

the previous models. Below is the summary of the Model-4. 
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Figure 15: The summary of the Model-4 

 

3.5. The Combined Model 

Suppose that we have an input 𝑥 and say that 𝑥 has two components 𝑥^ and 𝑥b so that 

𝑥^ corresponds to the array of image and 𝑥b corresponds to the feature. We know that for each 

𝑥 there exist 4 outputs from the previous models (Model-1, Model-2, Model-3, Model-4). These 

outputs are not the categories, but the probability distributions obtained from the models. Let 

us put 𝑚^, 𝑚b, 𝑚c, and 𝑚d for a given input 𝑥. So, we may think that we created 4 more 

features. We can consider that these features 𝑚^, 𝑚b, 𝑚c, and 𝑚d are actually vectors which 

have coordinates carrying probabilities derived from the corresponding models. For instance, 

if 𝑚d = (0.1, 0.1, 0.2, 0.3, 0.05, 0.03, 0.07, 0.05, 0.1), that means the Model-4 gives a 

probability distribution of these 9 numbers for the given input 𝑥. According to the argmax 

principle the Model-4 implies that 𝑥 is labeled as ‘surprise’ (because the maximum probability 

0.3 indicates the 4th component which corresponds to the probability of being labeled as 

‘surprise’) though it may not actually be of that label. Although they may be not well distributed 

probabilities, as we will see that accuracies are low, they may give clues if we can use all of 

them at the same time. Hence, we may use these probability distributions as features for another 

model, say the combined model. The following figure presents this, indeed, simple model. 
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Figure 16: The combined model 

The input_1, the input_2, the input_3, and the input_4 in the figure above correspond to 

the probability vectors derived from the previous models (Model-1, Model-2, Model-3, Model-

4, respectively). Firstly, these input vectors are taken to be summed to be another vector of 

dimension 9 (the figure shows this step as TFOpLambda) and then sent to a dense layer with 

the softmax activation function.  
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5. TRAINING AND ACCURACIES 

We used the programming language Python 3 and the libraries Keras and Tensorflow 

for modelling and training. The number of epochs for each of the first four models is 10. This 

number is 20 for the combined model. Optimization is customized by RMSprop with learning 

rate equal to 0.001. The optimization of the loss function is tuned for over batches of 100 inputs 

(the images and the features) for each of the five models. While training the models, the training 

data is split into two sets one of which is the validation set and the other one is the actual training 

data that the model learns from. The splitting ratio of validation data is 0.2 except that we split 

the training set with a ratio of 0.1 for the combined model. We used this method in order to see 

how well the training is processed. The accuracies of the models on the training dataset and the 

test dataset are given in the following table. 

 

Table 1: Accuracies of the models 

 
Accuracy on the training 

dataset 

Accuracy on the test 

dataset 

Model-1 0.57 0.41 

Model-2 0.49 0.41 

Model-3 0.63 0.41 

Model-4 0.64 0.38 

The combined model 0.69 0.43 

 

The following figures give an idea about how the training went through. The graphs on 

the left columns are for the training accuracies and the validation accuracies and the ones on 

the right columns are for the loss function values after each epoch of the model through the 

whole training dataset and the validation dataset.  

 
Figure 17: Accuracy and loss function graphs for Model-1 
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Figure 18: Accuracy and loss function graph for Model-2 

 
Figure 19: Accuracy and loss function for Model-3 

 

 
Figure 20: Accuracy and loss function for Model-4 
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5. CONCLUSION 

 The main intuition to develop a solution to the facial emotion recognition problem was 

due to the paper (G. Viswanatha Reddy et al, 2020). They used both hand-crafted features and 

images to train their model. We changed the idea of taking the distances between the facial 

landmarks into account, instead, we considered the ratios as we calculated the cosine values of 

the angles and some specific ratios of distances. The results were not that much successful as 

claimed in (G. Viswanatha Reddy et al, 2020). There are several reasons for such a difference. 

One of them is that they used the pretrained architectures (XceptionNet) for extracting features 

and a further advanced SVM (support vector machine) classifiers. Another reason is that they 

made use of more images than we used for this project. 

 The paper (M. A. Jalal et al, 2019) presents very nice results though that the dataset 

AffectNet has very wild images. What I have experienced from this project is that the number 

of nodes in dense layers does not change the results unless they are tuned extremely. 

Furthermore, the paper (M. A. Jalal et al, 2019) gives the intuition that the self-attention 

mechanisms are important for image classifications through convolutional neural networks. 

However, what I believe is that the hand-crafted feature extracting is also important so that we 

may be impressed by their unique effects in the paper (Dunau P. et al, 2019). 
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APPENDIX A 

THE MODULE BELOW CREATES COLUMNS FOR FEATURES 
 
import pandas as pd 
import numpy as np 
import csv 
 
df_training=pd.read_csv('training.csv') 
df_validation=pd.read_csv('validation.csv') 
 
print('training.csv and validation.csv are loaded. lengths are:') 
print(len(df_training)) 
print(len(df_validation)) 
 
# we drop columns got from the data to replace dlib information 
df_training=df_training.drop(['facial_landmarks','face_x','face_y','face_width','face_height'],a
xis=1) 
df_validation=df_validation.drop(['facial_landmarks','face_x','face_y','face_width','face_heigh
t'],axis=1) 
 
# create 16 length columns 
for i in range(67): 
    '''create cols for 
    lengths 0-1, 1-2,...,66-67 ''' 
    s='l_{}_{}'.format(i,i+1) 
     
    df_training[s]=np.nan 
    df_validation[s]=np.nan 
 
# adding ratio information to training data. 
 
df_training['r_3_48_3_60']=np.nan 
df_training['r_13_54_13_64']=np.nan 
df_training['r_61_67_50_58']=np.nan 
df_training['r_63_65_52_56']=np.nan 
df_training['r_62_66_51_57']=np.nan 
 
# adding ratio information to validation data. 
 
df_validation['r_3_48_3_60']=np.nan 
df_validation['r_13_54_13_64']=np.nan 
df_validation['r_61_67_50_58']=np.nan 
df_validation['r_63_65_52_56']=np.nan 
df_validation['r_62_66_51_57']=np.nan 
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column_names=list(df_training.columns) 
 
print('now number of columns is {}'.format(len(column_names))) 
 
# we add angles crosswise chosen between two groups of landmarks 
 
constant_landmarks=[0,1,2,14,15,16,27,28,29,7,8,9] 
active_landmarks=[17,18,19,20,21,22,23,24,25,26,36,37,38,39,40,41,42,43,44,45,46,47,48,49
,50,51,52,53,54,55,56,57,58,59] 
 
print('constant landmark count is {}'.format(len(constant_landmarks))) 
print('active landmarks count is {}'.format(len(active_landmarks))) 
 
from itertools import combinations 
 
comb = combinations(constant_landmarks, 2) 
 
comb_list=list(comb) 
 
for k in range(len(comb_list)): 
    for j in range(len(active_landmarks)): 
        t='a_{}_{}_{}'.format(active_landmarks[j],comb_list[k][0],comb_list[k][1]) 
        column_names+=[t] 
        #df_training[t]=np.nan 
        #df_validation[t]=np.nan 
        #print('the column '+t+' created for df_training and df_validation.') 
 
column_names_file_name='column_names.csv' 
 
# writing to csv file  
with open(column_names_file_name, 'w') as csvfile:  
    # creating a csv writer object  
    csvwriter = csv.writer(csvfile) 
         
    # writing the fields  
    csvwriter.writerow(column_names) 
 
THE FOLLOWING MODULE CREATES FEATURES USING DLIB LIBRARY WHILE 
DETECTING POSSIBLE ERRORS FOR TRAINING DATASET 
 
import os 
import pandas as pd 
import numpy as np 
import math 
 
import dlib 
import cv2 
from matplotlib import pyplot as plt 
import csv 
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def angle_(points): 
    '''points=[a,b,c]> gives the angle between 
    the vectors ab and bc. ''' 
    v1_x=points[0][0]-points[1][0] 
    v1_y=points[0][1]-points[1][1] 
    v2_x=points[2][0]-points[1][0] 
    v2_y=points[2][1]-points[1][1] 
    r1=v1_x*v2_x+v1_y*v2_y 
    r2=math.sqrt(v1_x**2+v1_y**2)*math.sqrt(v2_x**2+v2_y**2) 
 
    if r2==0: 
        return 'error' 
    elif r1/r2<=1 and -1<=r1/r2: 
        return math.acos(r1/r2) 
    elif r1>r2: 
        return 0 
    else: 
        return -math.pi 
 
def length_(points): 
    '''points=[a,b]> a ile b noktlari arasindaki 
    uzaklik.''' 
    d1=points[0][0]-points[1][0] 
    d2=points[0][1]-points[1][1] 
    d=math.sqrt(d1**2+d2**2) 
    return d 
 
def ratio(points): 
    d1=length_([points[0],points[1]]) 
    d2=length_([points[2],points(N. Rodrigez-Diaz et al, 2021)]) 
    if d2==0: 
        return 'error' 
    else: 
        return d1/d2 
 
df_training=pd.read_csv('training.csv') 
df_validation=pd.read_csv('validation.csv') 
 
 
detector=dlib.get_frontal_face_detector() 
predictor=dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") 
 
column_names_df=pd.read_csv('column_names.csv') 
column_names=list(column_names_df.columns) 
 
row_indices_selected=np.load('row_indices_selected_from_training_data.npy') 
row_indices_selected=row_indices_selected.tolist() 
row_indices_selected.sort() 
 
print('number of all rows is {}'.format(len(row_indices_selected))) 
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filename = "new_training_data_dlib_landmarks_and_features_v3.csv" 
 
 
 
full_error_list=[] 
angle_errors_list=[] 
ratio_errors_list=[] 
 
# writing to csv file  
with open(filename, 'w') as csvfile:  
    # creating a csv writer object  
    csvwriter = csv.writer(csvfile) 
         
    # writing the fields  
    csvwriter.writerow(column_names)  
         
    # writing the data rows  
    for i in row_indices_selected: 
        print('i={}'.format(i)) 
        try: 
            s="/Volumes/macpart/capstone_project_files/Source_4/Manually_Annotated_Images" 
            number_of_the_folder=df_training.iloc[i]['subDirectory_filePath'].split('/')[0] 
            name_of_the_image_file=df_training.iloc[i]['subDirectory_filePath'].split('/')[1] 
            os.chdir(s+'/'+number_of_the_folder) 
            img=cv2.imread(name_of_the_image_file,1) 
            img=cv2.resize(img,(100,100)) 
            face=detector(img) 
             
            if len(face)!=1: 
                continue 
            if img.shape[2]!=3: 
                continue 
            for f in face: 
                x_1=f.left() 
            landmarks=predictor(img,f) 
            landmarks_list=[] 
            for q in range(68): 
                landmarks_list.append([landmarks.part(q).x,landmarks.part(q).y]) 
            one_row=[] 
            one_row.append(df_training.iloc[i]['subDirectory_filePath']) 
            one_row.append(df_training.iloc[i]['expression']) 
            one_row.append(df_training.iloc[i]['valence']) 
            one_row.append(df_training.iloc[i]['arousal']) 
            for j in range(len(column_names)-4): 
                clm=column_names[j+4].split('_') 
                if clm[0]=='l': 
                    lm1=int(clm[1]) 
                    lm2=int(clm[2]) 
                    p1=landmarks_list[lm1] 
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                    p2=landmarks_list[lm2] 
                    dist=length_([p1,p2]) 
                    one_row.append(dist) 
                elif clm[0]=='a': 
                    lm1=int(clm[1]) 
                    lm2=int(clm[2]) 
                    lm3=int(clm(N. Rodrigez-Diaz et al, 2021)) 
                    p1=landmarks_list[lm1] 
                    p2=landmarks_list[lm2] 
                    p3=landmarks_list[lm3] 
                    ang=angle_([p1,p2,p3]) 
                    if ang=='error': 
                        angle_errors_list+=[(i,column_names[j+4])] 
                    one_row.append(ang) 
                else: 
                    lm1=int(clm[1]) 
                    lm2=int(clm[2]) 
                    lm3=int(clm(N. Rodrigez-Diaz et al, 2021)) 
                    lm4=int(clm([4]  Z. Kowalczk et al, 2019)) 
                    p1=landmarks_list[lm1] 
                    p2=landmarks_list[lm2] 
                    p3=landmarks_list[lm3] 
                    p4=landmarks_list[lm4] 
                    rat=ratio([p1,p2,p3,p4]) 
                    if rat=='error': 
                        ratio_errors_list+=[(i,column_names[j+4])] 
                    one_row.append(rat) 
            csvwriter.writerow(one_row) 
        except: 
            full_error_list+=[i] 
 
print(full_error_list) 
print('serious error occurs in {} rows'.format(len(full_error_list))) 
 
print(angle_errors_list) 
print('angle error occurs in {} rows'.format(len(angle_errors_list))) 
 
print(ratio_errors_list) 
print('ratio error occurs in {} rows'.format(len(ratio_errors_list))) 
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THE FOLLOWING MODULE CREATES FEATURES USING DLIB LIBRARY WHILE 
DETECTING POSSIBLE ERRORS FOR THE TEST DATASET 
 
 
import os 
import pandas as pd 
import numpy as np 
import math 
 
import dlib 
import cv2 
import csv 
 
def angle_(points): 
    '''points=[a,b,c]> gives the angle between 
    the vectors ba and bc.''' 
    v1_x=points[0][0]-points[1][0] 
    v1_y=points[0][1]-points[1][1] 
    v2_x=points[2][0]-points[1][0] 
    v2_y=points[2][1]-points[1][1] 
    r1=v1_x*v2_x+v1_y*v2_y 
    r2=math.sqrt(v1_x**2+v1_y**2)*math.sqrt(v2_x**2+v2_y**2) 
 
    if r2==0: 
        return 'error' 
    elif r1/r2<=1 and -1<=r1/r2: 
        return math.acos(r1/r2) 
    elif r1>r2: 
        return 0 
    else: 
        return -math.pi 
 
def length_(points): 
    '''points=[a,b]> gives the distance between two landmarks.''' 
    d1=points[0][0]-points[1][0] 
    d2=points[0][1]-points[1][1] 
    d=math.sqrt(d1**2+d2**2) 
    return d 
 
def ratio(points): 
    d1=length_([points[0],points[1]]) 
    d2=length_([points[2],points(N. Rodrigez-Diaz et al, 2021)]) 
    if d2==0: 
        return 'error' 
    else: 
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        return d1/d2 
 
#df_training=pd.read_csv('training.csv') 
df_validation=pd.read_csv('validation.csv') 
 
 
detector=dlib.get_frontal_face_detector() 
predictor=dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") 
 
column_names_df=pd.read_csv('column_names.csv') 
column_names=list(column_names_df.columns) 
 
 
 
print('number of all rows is {}'.format(len(df_validation))) 
 
 
filename = "new_test_data_dlib_landmarks_and_features_v1.csv" 
 
 
 
full_error_list=[] 
angle_errors_list=[] 
ratio_errors_list=[] 
 
# writing to csv file  
with open(filename, 'w') as csvfile:  
    # creating a csv writer object  
    csvwriter = csv.writer(csvfile) 
         
    # writing the fields  
    csvwriter.writerow(column_names)  
         
    # writing the data rows  
    for i in range(len(df_validation)): 
        print('i={}'.format(i)) 
        try: 
            s="/Volumes/macpart/capstone_project_files/Source_4/Manually_Annotated_Images" 
            number_of_the_folder=df_validation.iloc[i]['subDirectory_filePath'].split('/')[0] 
            name_of_the_image_file=df_validation.iloc[i]['subDirectory_filePath'].split('/')[1] 
            os.chdir(s+'/'+number_of_the_folder) 
            img=cv2.imread(name_of_the_image_file,1) 
            img=cv2.resize(img,(100,100)) 
            face=detector(img) 
             
            if len(face)!=1: 
                continue 
            #if img.shape[0]!=img.shape[1]: 
            #    nonsquare_pics+=[i] 
            if img.shape[2]!=3: 
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                continue 
            for f in face: 
                x_1=f.left() 
            landmarks=predictor(img,f) 
            landmarks_list=[] 
            for q in range(68): 
                landmarks_list.append([landmarks.part(q).x,landmarks.part(q).y]) 
            one_row=[] 
            one_row.append(df_validation.iloc[i]['subDirectory_filePath']) 
            one_row.append(df_validation.iloc[i]['expression']) 
            one_row.append(df_validation.iloc[i]['valence']) 
            one_row.append(df_validation.iloc[i]['arousal']) 
            for j in range(len(column_names)-4): 
                clm=column_names[j+4].split('_') 
                if clm[0]=='l': 
                    lm1=int(clm[1]) 
                    lm2=int(clm[2]) 
                    p1=landmarks_list[lm1] 
                    p2=landmarks_list[lm2] 
                    dist=length_([p1,p2]) 
                    one_row.append(dist) 
                elif clm[0]=='a': 
                    lm1=int(clm[1]) 
                    lm2=int(clm[2]) 
                    lm3=int(clm(N. Rodrigez-Diaz et al, 2021)) 
                    p1=landmarks_list[lm1] 
                    p2=landmarks_list[lm2] 
                    p3=landmarks_list[lm3] 
                    ang=angle_([p1,p2,p3]) 
                    if ang=='error': 
                        angle_errors_list+=[(i,column_names[j+4])] 
                    one_row.append(ang) 
                else: 
                    lm1=int(clm[1]) 
                    lm2=int(clm[2]) 
                    lm3=int(clm(N. Rodrigez-Diaz et al, 2021)) 
                    lm4=int(clm([4]  Z. Kowalczk et al, 2019)) 
                    p1=landmarks_list[lm1] 
                    p2=landmarks_list[lm2] 
                    p3=landmarks_list[lm3] 
                    p4=landmarks_list[lm4] 
                    rat=ratio([p1,p2,p3,p4]) 
                    if rat=='error': 
                        ratio_errors_list+=[(i,column_names[j+4])] 
                    one_row.append(rat) 
            csvwriter.writerow(one_row) 
        except: 
            full_error_list+=[i] 
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print(full_error_list) 
print('serious error occurs in {} rows'.format(len(full_error_list))) 
 
print(angle_errors_list) 
print('angle error occurs in {} rows'.format(len(angle_errors_list))) 
 
print(ratio_errors_list) 
print('ratio error occurs in {} rows'.format(len(ratio_errors_list))) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CLEANING OF THE TRAINING DATA BEFORE APPLYING PCA 
 
import pandas as pd 
import numpy as np 
df=pd.read_csv('new_training_data_dlib_landmarks_and_features_v3.csv') 
 
print(len(df)) 
 
col_names=df.columns.tolist() 
err_list=[] 
 
 
for col in col_names: 
    print(col) 
    err_list+=df[df[col]=='error'].index.values.tolist() 
 
print(len(err_list)) 
e=set(err_list) 
err_list_uniq=list(e) 
print(len(err_list_uniq))    
print(max(err_list_uniq)) 
 
 
indicies_to_drop=[df.index[j] for j in err_list_uniq] 
 
df_updated=df.drop(indicies_to_drop) 
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df_updated.reset_index(inplace=False) 
 
df_updated.to_csv('new_training_data_dlib_landmarks_and_features_v4.csv') 
 
CLEANING OF THE TEST DATA BEFORE APPLYING PCA 
 
import pandas as pd 
import numpy as np 
df=pd.read_csv('new_test_data_dlib_landmarks_and_features_v1.csv') 
 
 
col_names=df.columns.tolist() 
err_list=[] 
 
 
for col in col_names: 
    print(col) 
    err_list+=df[df[col]=='error'].index.values.tolist() 
 
print('err_list is: \n') 
print(err_list) 
print(len(err_list)) 
e=set(err_list) 
err_list_uniq=list(e) 
print(len(err_list_uniq))    
print(max(err_list_uniq)) 
 
 
indicies_to_drop=[df.index[j] for j in err_list_uniq] 
 
df_updated=df.drop(indicies_to_drop) 
 
print(len(df_updated)) 
 
print(df_updated.head(10)) 
 
df_updated.reset_index(inplace=False) 
 
df_updated.to_csv('new_test_data_dlib_landmarks_and_features_v2.csv', index=False) 
 
 
SAVING (TRAINING AND TEST) IMAGES AS NUMPY ARRAYS 
 
import os 
import pandas as pd 
import numpy as np 
import cv2 
 
 
print(os.getcwd()) 
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#df_training=pd.read_csv('new_training_data_dlib_landmarks_and_features_v4.csv') 
#df_test=pd.read_csv('new_test_data_dlib_landmarks_and_features_v2.csv') 
print('train data are loaded.') 
 
 
s="/Volumes/macpart/capstone_project_files/Source_4/Manually_Annotated_Images" 
 
 
df_image=[] 
not_RGB=[] 
not_3_channel=[] 
for i in range(len(df_test)): 
    print('i={}'.format(i)) 
    number_of_the_folder=df.iloc[i]['subDirectory_filePath'].split('/')[0] 
    name_of_the_image_file=df.iloc[i]['subDirectory_filePath'].split('/')[1] 
    os.chdir(s+'/'+number_of_the_folder) 
    #img=Image.open(name_of_the_image_file) 
    img=cv2.imread(name_of_the_image_file,1) 
    img=cv2.resize(img,(100,100)) 
    df_image.append(img) 
 
 
os.chdir('/Users/ilkerarslan/Desktop/Capstone_venv_2') 
df_test_image=np.asarray(df_test_image) 
 
#np.save('test_images_as_arrays.npy',df_image) 
#np.save('training_images_as_arrays.npy') 
 
 
 
 
 
 
 
 
THE MODULE APPLYIES PCA  
 
import os 
import pandas as pd 
import numpy as np 
from sklearn.decomposition import PCA 
from sklearn.preprocessing import StandardScaler 
import math 
 
drive_directory='/Volumes/macpart/capstone_project_files/Capstone_venv_2' 
original_directory='/Users/ilkerarslan/Desktop/Capstone_venv_2' 
os.chdir(drive_directory) 
 
df_train=pd.read_csv('new_training_data_dlib_landmarks_and_features_v4.csv') 
print(df_train.head(3)) 
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z=df_train.columns.tolist()[0] 
print(df_train.columns.tolist()[0]) 
df_train=df_train.drop([z],axis=1) 
print(df_train.columns.tolist()[0]) 
print(df_train.head(3)) 
 
df_test=pd.read_csv('new_test_data_dlib_landmarks_and_features_v2.csv') 
print(df_test.head(3)) 
 
df_x_train=df_train.drop(['subDirectory_filePath','valence','arousal','expression'],axis=1) 
#df_y_train=df_train['expression'] 
 
df_x_test=df_test.drop(['subDirectory_filePath','valence','arousal','expression'],axis=1) 
#df_y_test=df_test['expression'] 
 
c=df_x_train.columns.tolist() 
for n in c: 
    if n[0]=='l': 
        print(n) 
        df_x_train=df_x_train.drop([n],axis=1) 
        df_x_test=df_x_test.drop([n],axis=1) 
 
    elif n[0]=='a': 
        df_x_train[n]=df_x_train[n].apply(lambda x: math.cos(x)) 
        df_x_test[n]=df_x_test[n].apply(lambda x: math.cos(x)) 
 
print('before PCA') 
print(df_train.shape) 
 
 
scaler = StandardScaler() 
 
scaler.fit(df_x_train) 
 
df_x_train=scaler.transform(df_x_train) 
df_x_test=scaler.transform(df_x_test) 
 
 
# Make an instance of the Model 
pca = PCA(.95) 
 
pca.fit(df_x_train) 
 
df_x_train=pca.transform(df_x_train) 
df_x_test=pca.transform(df_x_test) 
 
np.save('x_train_angle_and_ratio_features_after_PCA_95.npy',df_x_train) 
np.save('x_test_angle_and_ratio_features_after_PCA_95.npy.npy',df_x_test) 
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THE MODULE BELOW APPLYIES DATA AUGMENTATION FOR THE TRAINING 
DATASET 
 
import imutils 
import cv2 
from imutils.convenience import translate 
from matplotlib import pyplot as plt 
import random 
import numpy as np 
from sklearn.utils import shuffle 
 
 
img=cv2.imread('ilker_pic.png',3) 
 
def random_augmentation(img): 
    t_list=[-15+i for i in range(31)] 
    r_list=[-30+j for j in range(61)] 
    x=random.choice([0,1,2]) 
    if x==2: 
        a=random.choice([0,1])        
        if a==0:     
            tx=random.choice(t_list)   
            ty=random.choice(t_list)       
            img_translated=imutils.translate(img,tx,ty)       
            return img_translated      
        else:       
            r=random.choice(r_list)     
            img_rotated=imutils.rotate(img,r)     
            return img_rotated 
    else: 
        return 'nothing' 
 
training_augmented_images=[] 
training_augmented_angle_ratio_features=[] 
training_augmented_length_features=[] 
training_augmented_eyes=[] 
training_augmented_mouth=[] 
y_augmented_train=[] 
 
original_training_images=np.load('training_images_as_arrays.npy') 
original_x_train_angle_and_ratio_features=np.load('x_train_angle_and_ratio_features_after_
PCA_95.npy') 
original_x_train_length_features=np.load('x_train_length_features.npy') 
original_x_train_eyes=np.load('x_train_eyes.npy') 
original_x_train_mouth=np.load('x_train_mouth.npy') 
original_y_train=np.load('y_train.npy') 
 
 
 
for i in range(len(original_training_images)): 
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    image_array=original_training_images[i] 
    im=random_augmentation(image_array) 
    if type(im)==str: 
        training_augmented_images.append(image_array) 
              
training_augmented_angle_ratio_features.append(original_x_train_angle_and_ratio_features[
i]) 
        
        y_augmented_train.append(original_y_train[i]) 
    else: 
        training_augmented_images.append(image_array) 
        
training_augmented_angle_ratio_features.append(original_x_train_angle_and_ratio_features[
i]) 
        
        y_augmented_train.append(original_y_train[i]) 
 
        training_augmented_images.append(im) 
        
training_augmented_angle_ratio_features.append(original_x_train_angle_and_ratio_features[
i]) 
        y_augmented_train.append(original_y_train[i]) 
 
training_augmented_images=np.asarray(training_augmented_images) 
training_augmented_angle_ratio_features=np.asarray(training_augmented_angle_ratio_featur
es) 
y_augmented_train=np.asarray(y_augmented_train) 
         
 
print(len(training_augmented_images)) 
 
images, angle_ratio, length, eyes, mouth, y_values 
=shuffle(training_augmented_images,training_augmented_angle_ratio_features,training_aug
mented_length_features,training_augmented_eyes,training_augmented_mouth,y_augmented_
train) 
 
np.save('augmented_training_images.npy',images) 
np.save('augmented_training_angle_ratio_features.npy',angle_ratio) 
np.save('augmented_y_train.npy',y_values) 
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MODEL-1 
 
import numpy as np 
import pandas as pd 
from pandas.core.accessor import DirNamesMixin 
from sklearn.model_selection import train_test_split 
import matplotlib.pyplot as plt 
import tensorflow as tf 
from tensorflow import keras 
 
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Dropout, Input, 
concatenate 
from tensorflow.keras import layers 
from tensorflow.keras.utils import to_categorical 
from tensorflow.keras.optimizers import RMSprop 
 
from sklearn.datasets import make_circles 
from sklearn.metrics import accuracy_score 
from sklearn.metrics import precision_score 
from sklearn.metrics import recall_score 
from sklearn.metrics import f1_score 
from sklearn.metrics import cohen_kappa_score 
from sklearn.metrics import roc_auc_score 
from sklearn.metrics import confusion_matrix 
from tensorflow.python.keras.engine.training import Model 
 
from sklearn.metrics import classification_report 
from tensorflow.keras.layers import Dropout 
 
# we extract the data 
x_train_images=np.load('augmented_training_images_v2.npy') 
x_train_images=x_train_images/255 
x_train_angle_and_ratio_features=np.load('augmented_training_angle_ratio_features_v2.npy'
) 
 
x_train_i=Input(shape=x_train_images[0].shape) 
x_train_f=Input(shape=x_train_angle_and_ratio_features[0].shape) 
 
c=Conv2D(16, (3,3), activation='relu')(x_train_i) 
c=MaxPooling2D(pool_size=(3,3))(c) 
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c=Conv2D(32, (3,3), activation='relu')(c) 
c=MaxPooling2D(pool_size=(2,2))(c) 
c=Conv2D(64, (3,3), activation='relu')(c) 
c=MaxPooling2D(pool_size=(2,2))(c) 
c=Flatten()(c) 
c=Dense(100, activation='relu')(c) 
 
d=Dense(100, activation='sigmoid')(x_train_f) 
 
merged=concatenate([c,d]) 
 
m=Dense(9,activation='softmax')(merged) 
 
model = Model(inputs=[x_train_i,x_train_f], outputs=m) 
 
model.compile(loss='categorical_crossentropy', 
              optimizer=RMSprop(learning_rate=0.001), 
              metrics=['acc']) 
 
 
 
y_train=np.load('augmented_y_train_v2.npy') 
y_train=np.where(y_train==10, 8, y_train) 
 
y = np.zeros((y_train.size, y_train.max()+1)) 
y[np.arange(y_train.size),y_train] = 1 
 
 
# we train the model. 
hist = model.fit([x_train_images,x_train_angle_and_ratio_features], y,  
           batch_size=100, epochs=10, validation_split=0.2 ) 
 
 
# we observe  
 
plt.plot(hist.history['acc']) 
plt.plot(hist.history['val_acc']) 
plt.title('Model accuracy') 
plt.ylabel('Accuracy') 
plt.xlabel('Epoch') 
plt.legend(['Train', 'Val'], loc='upper left') 
plt.show() 
 
plt.plot(hist.history['loss']) 
plt.plot(hist.history['val_loss']) 
plt.title('Model loss') 
plt.ylabel('Loss') 
plt.xlabel('Epoch') 
plt.legend(['Train', 'Val'], loc='upper right') 
plt.show() 
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# We save this model     
model.save('model_30.h5') 
 
model.summary() 
 
x_test_images=np.load('test_images_v2.npy') 
x_test_images=x_test_images/255 
x_test_features_ar=np.load('test_angle_ratio_features_v2.npy') 
 
y_test=np.load('y_test_v2.npy') 
y_test=np.where(y_test==10,8,y_test) 
 
y = np.zeros((y_test.size, y_test.max()+1)) 
y[np.arange(y_test.size),y_test] = 1 
 
# predict probabilities for test set 
pred = model.predict([x_test_images,x_test_features_ar], batch_size=100,verbose=1) 
predicted=np.argmax(pred,axis=1) 
report=classification_report(np.argmax(y, axis=1),predicted) 
print(report) 
 
 
MODEL-2 
 
import numpy as np 
import pandas as pd 
from pandas.core.accessor import DirNamesMixin 
from sklearn.model_selection import train_test_split 
import matplotlib.pyplot as plt 
import tensorflow as tf 
from tensorflow import keras 
#from tf.keras.models import Sequential 
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Dropout, Input, 
concatenate 
from tensorflow.keras import layers 
from tensorflow.keras.utils import to_categorical 
from tensorflow.keras.optimizers import RMSprop 
 
from sklearn.datasets import make_circles 
from sklearn.metrics import accuracy_score 
from sklearn.metrics import precision_score 
from sklearn.metrics import recall_score 
from sklearn.metrics import f1_score 
from sklearn.metrics import cohen_kappa_score 
from sklearn.metrics import roc_auc_score 
from sklearn.metrics import confusion_matrix 
from tensorflow.python.keras.engine.training import Model 
 
from sklearn.metrics import classification_report 
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from tensorflow.keras.layers import Dropout 
 
# we extract the data 
x_train_images=np.load('augmented_training_images_v2.npy') 
x_train_images=x_train_images/255 
x_train_angle_and_ratio_features=np.load('augmented_training_angle_ratio_features_v2.npy'
) 
 
x_train_i=Input(shape=x_train_images[0].shape) 
x_train_f=Input(shape=x_train_angle_and_ratio_features[0].shape) 
 
c=Conv2D(16, (2,2), activation='relu')(x_train_i) 
c=MaxPooling2D(pool_size=(3,3))(c) 
c=Conv2D(32, (2,2), activation='relu')(c) 
c=MaxPooling2D(pool_size=(2,2))(c) 
c=Conv2D(64, (2,2), activation='relu')(c) 
c=MaxPooling2D(pool_size=(2,2))(c) 
c=Flatten()(c) 
c=Dense(60, activation='sigmoid')(c) 
 
d=Dense(40, activation='sigmoid')(x_train_f) 
 
merged=concatenate([c,d]) 
 
m=Dense(9,activation='softmax')(merged) 
 
model = Model(inputs=[x_train_i,x_train_f], outputs=m) 
 
model.compile(loss='categorical_crossentropy', 
              optimizer=RMSprop(learning_rate=0.001), 
              metrics=['acc']) 
 
 
 
y_train=np.load('augmented_y_train_v2.npy') 
y_train=np.where(y_train==10, 8, y_train) 
 
y = np.zeros((y_train.size, y_train.max()+1)) 
y[np.arange(y_train.size),y_train] = 1 
 
 
# we train the model. 
hist = model.fit([x_train_images,x_train_angle_and_ratio_features], y,  
           batch_size=100, epochs=10, validation_split=0.2 ) 
 
 
# we observe  
 
plt.plot(hist.history['acc']) 
plt.plot(hist.history['val_acc']) 
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plt.title('Model accuracy') 
plt.ylabel('Accuracy') 
plt.xlabel('Epoch') 
plt.legend(['Train', 'Val'], loc='upper left') 
plt.show() 
 
plt.plot(hist.history['loss']) 
plt.plot(hist.history['val_loss']) 
plt.title('Model loss') 
plt.ylabel('Loss') 
plt.xlabel('Epoch') 
plt.legend(['Train', 'Val'], loc='upper right') 
plt.show() 
 
# We save this model     
model.save('model_32.h5') 
 
model.summary() 
 
x_test_images=np.load('test_images_v2.npy') 
x_test_images=x_test_images/255 
x_test_features_ar=np.load('test_angle_ratio_features_v2.npy') 
 
y_test=np.load('y_test_v2.npy') 
y_test=np.where(y_test==10,8,y_test) 
 
y = np.zeros((y_test.size, y_test.max()+1)) 
y[np.arange(y_test.size),y_test] = 1 
 
# predict probabilities for test set 
pred = model.predict([x_test_images,x_test_features_ar], batch_size=100,verbose=1) 
predicted=np.argmax(pred,axis=1) 
report=classification_report(np.argmax(y, axis=1),predicted) 
print(report) 
 
 
MODEL-3 
 
import numpy as np 
import pandas as pd 
from pandas.core.accessor import DirNamesMixin 
from sklearn.model_selection import train_test_split 
import matplotlib.pyplot as plt 
import tensorflow as tf 
from tensorflow import keras 
#from tf.keras.models import Sequential 
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Dropout, Input, 
concatenate 
from tensorflow.keras import layers 
from tensorflow.keras.utils import to_categorical 
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from tensorflow.keras.optimizers import RMSprop 
 
from sklearn.datasets import make_circles 
from sklearn.metrics import accuracy_score 
from sklearn.metrics import precision_score 
from sklearn.metrics import recall_score 
from sklearn.metrics import f1_score 
from sklearn.metrics import cohen_kappa_score 
from sklearn.metrics import roc_auc_score 
from sklearn.metrics import confusion_matrix 
from tensorflow.python.keras.engine.training import Model 
 
from sklearn.metrics import classification_report 
from tensorflow.keras.layers import Dropout 
 
# we extract the data 
x_train_images=np.load('augmented_training_images_v2.npy') 
x_train_images=x_train_images/255 
x_train_angle_and_ratio_features=np.load('augmented_training_angle_ratio_features_v2.npy'
) 
 
x_train_i=Input(shape=x_train_images[0].shape) 
x_train_f=Input(shape=x_train_angle_and_ratio_features[0].shape) 
 
c=Conv2D(32, (2,2), activation='relu')(x_train_i) 
c=MaxPooling2D(pool_size=(3,3))(c) 
c=Conv2D(64, (2,2), activation='relu')(c) 
c=MaxPooling2D(pool_size=(2,2))(c) 
c=Flatten()(c) 
c=Dense(50, activation='sigmoid')(c) 
 
d=Dense(50, activation='sigmoid')(x_train_f) 
 
merged=concatenate([c,d]) 
 
m=Dense(9,activation='softmax')(merged) 
 
model = Model(inputs=[x_train_i,x_train_f], outputs=m) 
 
model.compile(loss='categorical_crossentropy', 
              optimizer=RMSprop(learning_rate=0.001), 
              metrics=['acc']) 
 
 
 
y_train=np.load('augmented_y_train_v2.npy') 
y_train=np.where(y_train==10, 8, y_train) 
 
y = np.zeros((y_train.size, y_train.max()+1)) 
y[np.arange(y_train.size),y_train] = 1 
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# we train the model. 
hist = model.fit([x_train_images,x_train_angle_and_ratio_features], y,  
           batch_size=100, epochs=10, validation_split=0.2 ) 
 
 
# we observe  
 
plt.plot(hist.history['acc']) 
plt.plot(hist.history['val_acc']) 
plt.title('Model accuracy') 
plt.ylabel('Accuracy') 
plt.xlabel('Epoch') 
plt.legend(['Train', 'Val'], loc='upper left') 
plt.show() 
 
plt.plot(hist.history['loss']) 
plt.plot(hist.history['val_loss']) 
plt.title('Model loss') 
plt.ylabel('Loss') 
plt.xlabel('Epoch') 
plt.legend(['Train', 'Val'], loc='upper right') 
plt.show() 
 
# We save this model     
model.save('model_33.h5') 
 
model.summary() 
 
x_test_images=np.load('test_images_v2.npy') 
x_test_images=x_test_images/255 
x_test_features_ar=np.load('test_angle_ratio_features_v2.npy') 
 
y_test=np.load('y_test_v2.npy') 
y_test=np.where(y_test==10,8,y_test) 
 
y = np.zeros((y_test.size, y_test.max()+1)) 
y[np.arange(y_test.size),y_test] = 1 
 
# predict probabilities for test set 
pred = model.predict([x_test_images,x_test_features_ar], batch_size=100,verbose=1) 
predicted=np.argmax(pred,axis=1) 
report=classification_report(np.argmax(y, axis=1),predicted) 
print(report) 
 
 
 
 
MODEL-4 
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import numpy as np 
import pandas as pd 
from pandas.core.accessor import DirNamesMixin 
from sklearn.model_selection import train_test_split 
import matplotlib.pyplot as plt 
import tensorflow as tf 
from tensorflow import keras 
#from tf.keras.models import Sequential 
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Dropout, Input, 
concatenate 
from tensorflow.keras import layers 
from tensorflow.keras.utils import to_categorical 
from tensorflow.keras.optimizers import RMSprop 
 
from sklearn.datasets import make_circles 
from sklearn.metrics import accuracy_score 
from sklearn.metrics import precision_score 
from sklearn.metrics import recall_score 
from sklearn.metrics import f1_score 
from sklearn.metrics import cohen_kappa_score 
from sklearn.metrics import roc_auc_score 
from sklearn.metrics import confusion_matrix 
from tensorflow.python.keras.engine.training import Model 
 
from sklearn.metrics import classification_report 
from tensorflow.keras.layers import Dropout 
 
# we extract the data 
 
 
x_train_images=np.load('augmented_training_images_v2.npy') 
x_train_images=x_train_images/255 
x_train_angle_and_ratio_features=np.load('augmented_training_angle_ratio_features_v2.npy'
) 
 
x_train_i=Input(shape=x_train_images[0].shape) 
x_train_f=Input(shape=x_train_angle_and_ratio_features[0].shape) 
 
c=Conv2D(8, (2,2), activation='relu')(x_train_i) 
c=MaxPooling2D(pool_size=(2,2))(c) 
c=Conv2D(32, (2,2), activation='relu')(c) 
c=MaxPooling2D(pool_size=(2,2))(c) 
c=Flatten()(c) 
 
 
c=Dense(60, activation='relu')(c) 
 
d=Dense(40, activation='relu')(x_train_f) 
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merged=concatenate([c,d]) 
 
m=Dense(9,activation='softmax')(merged) 
 
model = Model(inputs=[x_train_i,x_train_f], outputs=m) 
 
model.compile(loss='categorical_crossentropy', 
              optimizer=RMSprop(learning_rate=0.001), 
              metrics=['acc']) 
 
 
 
y_train=np.load('augmented_y_train_v2.npy') 
y_train=np.where(y_train==10, 8, y_train) 
 
y = np.zeros((y_train.size, y_train.max()+1)) 
y[np.arange(y_train.size),y_train] = 1 
 
 
hist = model.fit([x_train_images,x_train_angle_and_ratio_features], y,  
           batch_size=100, epochs=10, validation_split=0.2 ) 
 
 
# we observe  
 
plt.plot(hist.history['acc']) 
plt.plot(hist.history['val_acc']) 
plt.title('Model accuracy') 
plt.ylabel('Accuracy') 
plt.xlabel('Epoch') 
plt.legend(['Train', 'Val'], loc='upper left') 
plt.show() 
 
plt.plot(hist.history['loss']) 
plt.plot(hist.history['val_loss']) 
plt.title('Model loss') 
plt.ylabel('Loss') 
plt.xlabel('Epoch') 
plt.legend(['Train', 'Val'], loc='upper right') 
plt.show() 
 
# We save this model     
model.save('model_34.h5') 
 
model.summary() 
 
x_test_images=np.load('test_images_v2.npy') 
x_test_images=x_test_images/255 
x_test_features_ar=np.load('test_angle_ratio_features_v2.npy') 
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y_test=np.load('y_test_v2.npy') 
y_test=np.where(y_test==10,8,y_test) 
 
y = np.zeros((y_test.size, y_test.max()+1)) 
y[np.arange(y_test.size),y_test] = 1 
 
# predict probabilities for test set 
pred = model.predict([x_test_images,x_test_features_ar], batch_size=100,verbose=1) 
predicted=np.argmax(pred,axis=1) 
report=classification_report(np.argmax(y, axis=1),predicted) 
print(report) 
 
THE COMBINED MODEL 
 
import numpy as np 
import pandas as pd 
import os 
import matplotlib.pyplot as plt 
from sklearn.linear_model import LogisticRegression 
from tensorflow.keras.models import load_model 
from tensorflow.keras.utils import to_categorical 
from tensorflow.keras.optimizers import RMSprop 
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Dropout, Input, 
concatenate 
from tensorflow.python.keras.backend import shape 
from tensorflow.python.keras.engine.training import Model 
 
from sklearn.datasets import make_circles 
from sklearn.metrics import accuracy_score 
from sklearn.metrics import precision_score 
from sklearn.metrics import recall_score 
from sklearn.metrics import f1_score 
from sklearn.metrics import cohen_kappa_score 
from sklearn.metrics import roc_auc_score 
from sklearn.metrics import confusion_matrix 
from sklearn.metrics import classification_report 
 
drive_directory='/Volumes/macpart/capstone_project_files/Capstone_venv_2' 
original_directory='/Users/ilkerarslan/Desktop/Capstone_venv_2' 
os.chdir(drive_directory) 
 
# we extract the data 
x_train_images=np.load('augmented_training_images_v2.npy') 
x_train_images=x_train_images/255 
x_train_angle_and_ratio_features=np.load('augmented_training_angle_ratio_features_v2.npy'
) 
 
os.chdir(original_directory) 
 
model_30=load_model('model_30.h5') 
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print('model 30 is loaded') 
#model_31=load_model('model_31.h5') 
model_32=load_model('model_32.h5') 
print('model 32 is loaded') 
model_33=load_model('model_33.h5') 
print('model 33 is loaded') 
model_34=load_model('model_34.h5') 
print('model 34 is loaded') 
 
os.chdir(drive_directory) 
 
feature_30_x_train=np.load('feature_30_x_train.npy') 
print('prediction 30 is done.') 
 
#feature_31_x_train=model_31.predict([x_train_images,x_train_angle_and_ratio_features]) 
feature_32_x_train=np.load('feature_32_x_train.npy') 
print('prediction 32 is done.') 
feature_33_x_train=np.load('feature_33_x_train.npy') 
print('prediction 33 is done.') 
feature_34_x_train=np.load('feature_34_x_train.npy') 
print('predictons are made.') 
import tensorflow as tf 
 
 
f30=Input(shape=feature_30_x_train[0].shape) 
f32=Input(shape=feature_32_x_train[0].shape) 
f33=Input(shape=feature_33_x_train[0].shape) 
f34=Input(shape=feature_34_x_train[0].shape) 
 
 
print(feature_33_x_train[0].shape) 
 
merged=tf.math.add_n([f30,f32,f33,f34]) 
 
 
print(merged.shape) 
 
y=Dense(9,activation='softmax')(merged) 
 
model=Model(inputs=[f30,f32,f33,f34],outputs=y) 
 
# we determine the loss, the optimizer, the metric. 
model.compile(loss='categorical_crossentropy', 
              optimizer=RMSprop(learning_rate=0.001), 
              metrics=['acc']) 
 
 
y_train=np.load('augmented_y_train_v2.npy') 
y_train=np.where(y_train==10, 8, y_train) 
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y = np.zeros((y_train.size, y_train.max()+1)) 
y[np.arange(y_train.size),y_train] = 1 
 
 
# we train the model. 
hist = 
model.fit([feature_30_x_train,feature_32_x_train,feature_33_x_train,feature_34_x_train], y,  
           batch_size=100, epochs=20, validation_split=0.1 ) 
 
 
# we observe  
 
plt.plot(hist.history['acc']) 
plt.plot(hist.history['val_acc']) 
plt.title('Model accuracy') 
plt.ylabel('Accuracy') 
plt.xlabel('Epoch') 
plt.legend(['Train', 'Val'], loc='upper left') 
plt.show() 
 
plt.plot(hist.history['loss']) 
plt.plot(hist.history['val_loss']) 
plt.title('Model loss') 
plt.ylabel('Loss') 
plt.xlabel('Epoch') 
plt.legend(['Train', 'Val'], loc='upper right') 
plt.show() 
 
os.chdir(original_directory) 
# We save this model     
model.save('mixed_model_last_vesion.h5') 
 
print(model.summary()) 
os.chdir(drive_directory) 
 
test_images_v2=[] 
test_angle_ratio_features_v2=[] 
test_images_v1=np.load('test_images_as_arrays.npy') 
test_angle_ratio_features_v1=np.load('x_test_angle_and_ratio_features_after_PCA_95.npy') 
 
x_test_images=np.load('test_images_v2.npy') 
x_test_images=x_test_images/255 
x_test_features_ar=np.load('test_angle_ratio_features_v2.npy') 
 
y_test=np.load('y_test_v2.npy') 
print('test data is loaded') 
y_test=np.where(y_test==10,8,y_test) 
 
y = np.zeros((y_test.size, y_test.max()+1)) 
y[np.arange(y_test.size),y_test] = 1 
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feature_30_x_test=np.load('feature_30_x_test.npy') 
feature_32_x_test=np.load('feature_32_x_test.npy') 
feature_33_x_test=np.load('feature_33_x_test.npy') 
feature_34_x_test=np.load('feature_34_x_test.npy') 
print('test data is predicted.') 
# predict probabilities for test set 
pred = 
model.predict([feature_30_x_test,feature_32_x_test,feature_33_x_test,feature_34_x_test], 
batch_size=100,verbose=1) 
predicted=np.argmax(pred,axis=1) 
report=classification_report(np.argmax(y, axis=1),predicted) 
print(report) 
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