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ABSTRACT Network slicing is one of the major solutions needed to meet the requirements of next
generation cellular networks, under one common network infrastructure, in supporting multiple vertical
services provided by mobile network operators. Network slicing makes one shared physical network
infrastructure appear as multiple logically isolated virtual networks dedicated to different service types
where each Network Slice (NS) benefits from on-demand allocated resources. Typically, the available
resources distributed among NSs are correlated and one needs to allocate them judiciously in order to
guarantee the service, MNO, and overall system qualities. In this paper, we consider a joint resource
allocation strategy that weights the significance of the resources per a given NS by leveraging the correlation
structure of different quality-of-service (QoS) requirements of the services. After defining the joint resource
allocation problem including the correlation structure, we propose three novel scheduling mechanisms that
allocate available network resources to the generated NSs based on different type of services with different
QoS requirements. Performance of the proposed schedulers are then investigated through Monte-Carlo
simulations and compared with each other as well as against a traditional max-min fairness algorithm
benchmark. The results reveal that our schedulers, which have different complexities, outperform the
benchmark traditional method in terms of service-based and overall satisfaction ratios, while achieving
different fairness index levels.

INDEX TERMS Resource allocation, SDN, vertical industries, network slicing, MNOs.

I. INTRODUCTION
Telecommunication technologies have been transformational
in providing new and advanced ways of enabling end-to-
end communication services. 5G technology is envisioned
to provide enhanced services, connecting new industries
and empowering new user experiences for the decades to
come. In addition to providing high capacity and increased
data rates, the 5G era is expected to revolutionize the ways
applications communicate based on a flexible and ubiq-
uitous 5G infrastructure. This infrastructure is required to
promote: Optimization of scarce resources (e.g. frequency
spectrum, Radio Access Network (RAN)/transmission/core
equipment); Reduce capital expenditure (CapEx) and oper-
ating expenditure (OpEx); support the Machine Type Com-
munications (MTC) services and the Internet of things (IoT),
while seamlessly integrating both IT and telco domains.
5G requirements (i.e. low latency, high capacity, performance

and spectrum access) lead to a novel mobile network archi-
tecture which benefits from Software Defined Networking
(SDN), Network Function Virtualization (NFV), Cloud RAN
(C-RAN), and Multi-Access Edge Computing (MEC) tech-
nologies and provides the means to support the expected
higher service diversity, performance, flexible deployments,
and network slicing for Mobile Network Operators (MNOs).

The requirements of 5G architecture necessitate efficient
resource management, enhanced smart connectivity, and
delivery of a flexible architecture. Tools to enable these
solutions include open platforms (that can provide inte-
grated network services provided by third parties), intel-
ligent Operation, Administration and Management (OAM)
for autonomous fault management, and modular services
for flexibe on-demand deployment. The means to optimize
the network operation, and thus facilitate dependable ser-
vice delivery for the vertical stakeholders. This has got vital
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importance which creates novel-value-added services for
telecommunication providers. 5G networks are driven by
the flexibility and programmability of all network domains
including RANs, fronthaul & backhaul transmission net-
works, and core networks located at cloud environments
and/or network edges. Hence, network and compute visu-
alization, slicing, NFV, programmability and softwarization
technologies are required across all domains.

Application of 5G technology into the vertical markets
is beginning to develop solutions based on each vertical
industry’s specific needs. In particular, use cases from auto-
motive, transport and logistics, finance, health and wellness,
smart cities, agriculture industries should be targeted jointly
with the relevant telecommunication capabilities [1]–[4]. For
example, the water industry requires ubiquitous connectiv-
ity, network reliability and cost reduction delivered by also
heterogeneous Massive MTC (mMTC) support, industrial
applications need to satisfy stringent latency, throughput, and
reliability requirements, whilst other application types may
live with longer delays and intermittent connectivity, but
require minimal energy consumption.

A fundamental enabling technology of 5G is network slic-
ing which makes one shared physical network infrastructure
appear as multiple logically isolated virtual networks ded-
icated to different service types, and where each Network
Slice (NS) benefits from guaranteed and on-demand allocated
resources. The aim of network slicing is to provide end-to-
end level partitioning of the physical network while allowing
traffic grouping, tenant isolation and resource configuration
at the macro level. Network slicing and virtualization tech-
nologies can offer harder guarantees in terms of availability
of telecommunications systems. Thanks to network slicing,
an MNO can split its physical resources into multiple logical
slices and lease each to interested vertical industries. For
instance, an energy utility company producing electricitymay
lease a long term NS for the reliable connectivity of its smart
grid infrastructure comprising meters, sensors, controllers,
and so on. Conversely, a big event organizer may lease a short
term lease NS with streaming ultra-high definition (UHD)
video and voice-over-IP (VoIP) connectivity to support con-
certs, sports events, etc. Network slicing and virtualization
can also lead to CapEx/OpEx reduction due to easier man-
agement and re-utilization of resources.

A. RELATED WORK
Due to the excitement of business opportunities foreseen in
network slicing, Standards DevelopingOrganisations (SDOs)
such as the 3rd Generation Partnership Project (3GPP)
[5]–[7], European Telecommunications Standards Institute
(ETSI) NFV [8], Institute of Electrical and Electronics Engi-
neers (IEEE) [9], and other industry and open source com-
munities have generated lots of related technical definition
materials. 3GPP has initiated an overall OAM framework for
Infrastructure Providers (InPs) in order to manage the slices
as part of its virtualized NFV network. Moreover, signalling
strategies and procedures between user equipment (UE)

and network components is also being discussed under
SA-2 specifications [5]–[7]. ETSI NFV has issued a white
paper on network slicing, prioritizing NFV for 5G sys-
tems [8]. The IEEE’s perspective on network slicing has been
published in a recent 5G Roadmap whitepaper [9].

There are various works on network slicing in the con-
text of mobile network infrastructure [10]–[20]. Algorithmic
aspects of network slicing that describes the challenges of
introducing slicing in future wireless networks is described
in [10]. End-to-end network slicing for 5G mobile networks,
with three representative use case scenarios of Ultra Relia-
bility and Low Latency Communications (URLLC), mMTC,
and enhanced Mobile Broadband (eMBB), have been studied
in [11]. A NS architecture towards 5G communications, and
its demonstration using state-of-the art techniques, have been
shown in [12]. Orchestration and activation of NSs that cover
the entire life cycle in a cloud-native environment is demon-
strated in [13]. For multi-tenancy support, 5G crosshaul net-
work slicing and the corresponding architecture that focuses
on transport network enhancements are proposed in [14]. An
important contribution that considers network slicing deploy-
ment by integrating both SDN and NFV technologies into the
referenced architecture is studied in [15]. In the past, joint
resource allocations involving interference and power con-
sumption while providing different quality-of-service (QoS)
requirements have been discussed [16]. In [17], a sub-channel
allocation is considered in addition to efficient power utiliza-
tion. Finally, network virtualization in the context of mobile
cellular networks for multi-MNOs were investigated in our
previous works [18], [19].

In this paper our focus is concentrated on solving slice
optimization problems in order to maximize the satisfaction
ratios of MNOs while leveraging the benefits of the SDN-
based network slicing architecture. Resource allocation and
management have been further investigated within [21]–[28].
In [21], resource allocation and isolation in virtualized net-
work environments are investigated and challenges are pre-
sented. The authors in [22] propose a joint base station (BS)
assignment and resource block (RB) allocation in conjunction
with power allocation mechanism for UEs associated with
different slices that have minimum data rate constraint in a
virtualized wireless network. Similarly, the authors in [23]
propose a dynamic resource allocation method for UEs asso-
ciated with different slices in a C-RAN environment in order
to maximize system data rate under the minimum data rate
constraint assumption for each slice. In [24] and [25] a novel
cloud-based radio over fiber network architecture including
optimization of radio frequency, optical spectrum, and base-
band unit (BBU) processing resources in order to maximize
radio coverage under the consideration of QoS requirement
is proposed. LeAnh et al. [26] propose a resource allocation
method for NSs in conjunction with transmit power optimiza-
tion under the consideration of backhaul network limitations.
In [27], resource orchestration posed as a multi-objective
optimization problem in terms of load balance, energy cost
and resource consumption is investigated. In [28], a novel
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two-stage resource allocation algorithm for C-RAN architec-
ture is proposed with the limitations of fronthaul network and
cloud computation limits in order to maximize the profits of
both MNOs and infrastructure owner. However, none of the
above works consider the correlation and joint optimization
of multi-resource allocations in a sliced network architecture
between different MNOs/slices while exploiting the benefits
of SDN and network virtualization. In this paper, we pro-
pose different scheduling algorithms along with an SDN-
based network slicing framework that can allow immediate
resource sharing and slicing based on demands of services,
while taking into account the guarantees or Service Level
Agreements (SLAs) with multiple MNOs and vertical indus-
tries. The contributions of this paper are three fold: (i) We
propose a 5G system architecture design targeted for vertical
sectors that can improve the performance of communica-
tion/application solutions within the existing 5G framework.
(ii) We showcase the performance improvements compared
to traditional methods (such as Max-Min Fairness (MMF)) in
terms of service-satisfied ratio and ratio of allocated resource
to demand levels, by introducing carefully designed cost
functions and a weighted joint multi-resource allocation pro-
cess. (iii) Service awareness of resources are modeled into
our joint optimization methodology using weights which
are calculated by the Analytical Hierarchical Process (AHP)
method.

The rest of the paper is organized as follows. In Section II,
we describe an SDN-based network slicing framework for 5G
networks covering various 5G use cases for MNOs/vertical
sectors. In Section III, we describe the joint resource allo-
cation problem as a result of multiple MNOs and services
with different QoS requirements. In Section IV, we study the
optimization problem and propose three scheduling solutions
in 5G-enabled cellular networks together with the AHP tool
to effectively characterize service awareness of resources.
We provide numerical comparison results of the studied joint
optimization solutions in Section V, and we finally conclude
the paper in Section VI.
Notation: [.]T and [.]H denote transpose and Hermitian

operations. tanh(.) is Hyperbolic Tangent function. d.e is
the ceiling function. The sets are denoted by upper case
calligraphic symbols. The scalars are represented by regular
symbols and vectors are denoted by bold face regular letters,
e.g., x where x(k) denotes the k-th element of x.

II. SYSTEM ARCHITECTURE
In order to reliably handle data traffic and build a robust
architecture, virtualization techniques utilizing principles of
SDN and NFV can be considered. In this paper, we pro-
pose a multi-MNO resource sharing framework for hetero-
geneous network (HetNet) deployments using an SDN-based
network slicing concept. The overall proposed architecture
for the SDN-based network slicing, covering vertical use
cases and hierarchical SDN controllers is depicted in Fig. 1
where two MNOs, each providing three different services,
are sharing the same RAN, transmission network and core

network infrastructures via a virtualization controller and
several C-RAN controllers owned by an InP. In the proposed
architecture, the virtualization controller, which is managed
by Virtual Infrastructure Manager (VIM), stands between the
MNO’s applications/controllers and the 5G network infras-
tructure, whereas virtual SDN controllers (vSDN-C) of each
MNO, communicate with this virtualization controller via
VIM and the Slice Resource Orchestrator and Manager.
Each MNO can control their own NSs via their own virtual
Mobility Management Entity (vMME), virtual Home Sub-
scriber Station (vHSS) and virtual Policy and Charging Rules
Function (vPCRF) instantiated as Virtual Network Functions
(VNFs). Therefore, the capabilities in NS are not restricted to
data plane, i.e., they can also provide control plane relevant
capabilities.

The architecture given in Fig. 1 shows the interactions
between an InP and multiple MNOs (e.g. Mobile Virtual Net-
work Operators (MVNOs), with over-the-top (OTT) services)
as an extension of the system architecture defined in [18].
The main role of the InP is to provide the resources while
ensuring co-existence of different NS. The key elements, and
their corresponding architectural descriptions are as follows:
Virtualization Controller and C-RAN Controllers enable
end-to-end network control while supplying abstraction
towards higher layers (e.g. service layer). The virtualiza-
tion controller and MNO specific SDN controllers enable
control operation between each MNO’s applications and
the 5G softwarized network infrastructure underneath. The
slice management of each MNO can be performed simi-
lar to physical network resource management, once a slice
is assigned to an MNO. For this reason, the InP exposes
some control functionalities to MNOs in order to allow them
to control their own dedicated slices. Various applications
and services of each MNO are served by different slices
based on the requirements of the use cases such as factory
automation, connected vehicles, tactile internet, media and
entertainment, etc.
Slice Resource Orchestrator and Manager provides life-
cycle management for each individual slice (creation, acti-
vation, deletion). Slice resource orchestrator and manager is
responsible for 5G infrastructure management. This resource
orchestrator and manager ensures that network resource allo-
cations are efficient, flexible and adaptive among MNOs.
The allocation is performed based on various requirements
of vertical sectors and services of MNOs. The NS requests
arriving from each vertical to MNO, as well as from MNO
services into the InP, need to create virtual networks over the
physical network infrastructure.
Infrastructure hosts the physical and virtual resources. The
infrastructure comprises communication, storage and other
vertical specific (e.g. sensing, actuating) equipment provided
by sensor networks, access/core networks and cloud infras-
tructures. All those resources are programmable and can be
utilized by controller elements.

For the slice management life-cycle that is controlled by
a slice resource orchestrator and manager, (i) as the first
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FIGURE 1. SDN-based network slicing framework for 5G networks covering various 5G use cases for MNOs/vertical sectors.

step, MNOs perform a slice requirement plan, taking into
account the demands of their vertical coordinators as well as
the demands of their subscribers. In this step, MNOs reserve
compute, storage and network resources from an InP similar
to cloud reservations of resources. (ii) In the second step,
an InP manages slices based on service demands. (iii) In
the final step, MNOs perform intra-slice network manage-
ment and an InP performs inter-slice orchestration between
MNOs. For optimal network capacity planning, dynamic
scheduling of resources can help improve both costs and
coverage.

A. 5G APPLICATION USE CASES
The architecture is designed to provide the technical means to
enable and support competing traffic types of MNOs servic-
ing for different vertical use cases. On top of this architecture,
MNOs can obtain differentiated SLA requirements based on
different dimensions such as bandwidth, latency, reliability,
etc. The use cases defined in this architecture base their
definitions on 5G Infrastructure Public Private Partnership
(5G-PPP)’s and different SDOs’ three main use cases for 5G
NSs [1]:

i) URLLC applications: URLLC is one generic mode of
MTCwhich can be used formission-critical applications such
as reliable remote robotic actions, remote surgery or coor-
dination among vehicles. With the new applications that
URLLC relies on, ultra-reliable wireless connectivity can be
enabled with 99.999% availability for products and systems
used in, for example Industry 4.0. This use case investi-
gates challenges for enabling high reliability with guaranteed
latency. For these types of applications, end-to-end latency
should also be secured, including the communication setup.
For some applications such as alarms, robotic motion control,
the feedback loop of the system should be less than one
milliseconds which cannot be met with the current 3GPP
LongTermEvolution (LTE) infrastructure. On the other hand,
ensuring high reliability can only be obtained at the expense
of latency and/or capacity cost. For example, connected and
autonomous vehicles are beginning to become one of the
most significant use case of the increasingly connected world.
However, due to nature of mobility, it is not easy to support
real time reliability, safety and stability. For vehicular net-
work applications, network slicing in combination with MEC
can decrease the latency and increase capacity, especially
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FIGURE 2. Network sharing and allocation of resources to multiple MNOs each having different
services.

when VNFs are deployed to the edge and multi-level prior-
ity management is imposed in the network. MEC can also
provide higher battery lifetime of devices due to offloading,
and reliability due to potential redundancy.
ii) eMBB applications: Another important use case for
5G is the eMBB scenario. 5G new radio Phase 1 (Release
15, 2018) is mostly focusing on eMBB. This standard slice
type is expected to provide high data rate and high traffic
densities. For example, streaming delivery of 4K UHD live
video and other content-driven applications (including other
bandwidth demanding applications such as Augmented Real-
ity (AR)/Virtual Reality (VR)) with the assured user quality-
of-experience (QoE), or fast large file downloads are the
application areas of this use case. More advanced media
delivery services including 8K resolution, 6-degree of free-
dom (6DoF) video are also on the horizon which require on
the order of gigabits per second data transfer rates [29].
iii) mMTC applications: This use case investigates
challenges for ubiquitous coverage and massive connection
support for delay-tolerant traffic. In 3GPP standardization,
massive deployment of connected devices is left for 3GPP
Release 16 (2020). Typically, deployed mMTC devices can
be located in a remote area with no cellular connection.
Therefore, ubiquitous coverage should include remote and
rural areas. For instances, smart meter networks deployed
throughout the infrastructure can save physical resources and
reduce labour costs. Most of the mMTC devices are expected
to transmit only a few bytes of data for long periods of
time. Hence, capacity scaling as well as spectrum utiliza-
tion are important for mMTC applications. LoRa, Sigfox,

Narrowband IoT (NB-IoT) and LTE Cat-M1 (LTE-M) are
some of the prominent technologies in the context of low-
power wide area network (LPWAN) [30]. SigFox [31] and
LoRa [32] are more suited to long distance, low bit rate short
bursty traffic used in unlicensed bands (e.g. 868 MHz in
Europe). However, high loads of traffic can saturate the sys-
tem performance resulting in increased latency, high power
consumption and eventually potential loss of data which in
turn affects reliability. On the other hand, 3GPP LTE CAT-
M1 (or enhancedMTC (eMTC)) and LTE Cat NB1 (NB-IoT)
have been designed so as to provide better coverage, energy
savings and longer battery life, lower device cost and a higher
node density for massive connectivity. LTE CAT-M1 has
reduced bandwidth (1.4 MHz), single antenna UE, resulting
in decreased UE cost, and extended coverage. It also supports
the ability to handover from cell to cell, which is beneficial
for mobile services. NB-IoT, has bandwidth further reduced
to 180 kHz, with half-duplex mode option, and single tone
(15 kHz) transmission. This results in an additional extended
coverage as compared with LTE CAT-M1, providing further
reduction of UE cost and a battery lifetime up to 10 years.
However, it is limited by cell re-selection mechanism and
therefore applicable only for fixed applications.

B. MULTI-SLICE RESOURCE MANAGEMENT
We consider a multi-slice resource sharing mechanism,
as shown in Fig. 2. Each slice is assumed to serve multiple
UEs which are spatially distributed. Furthermore, each slice
connects to the distributed virtualization controller which
is responsible for assigning resources from a common pool
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to the slices. Based on the SLAs, the virtualization con-
troller exchanges messages with NFV Slice Management
and Orchestration (MANO) and Operations Support System
(OSS)/Business Support System (BSS) components to define
a mutual agreement for spectrum sharing policy. We study
a resource allocation problem where the virtualization con-
troller allocates several resources (e.g., RBs, virtual baseband
units (vBBUs), transmission link capacities, core network
equipment (NE), storage) to a slice based on the demands and
guarantees of the slice itself.

TABLE 1. The QoS requirements for different use cases [34].

We assume that there can bemanyNSs of eachMNO. Each
slice represents a corresponding SLA signed with the MNO.
Therefore, each slice corresponds to a different use case with
different QoS requirements (e.g. as presented in Table 1).
For example, the first NS can represent a URLLC use case
for cooperative collision avoidance system (CCAS) in a
Vehicular ad-hoc network (VANET) for a given UE set of
MNO-k , whereas another NS with eMBB use case of AR
should give another guaranteed SLA for a given UE set of
MNO-k [33]. CCAS is a life-saving use case of URLLC and
therefore it needs ultra-high reliability with 10−5 with lower
delay tolerance [34]. On the other hand, AR and 4K live video
of eMBB use case for entertainment purposes have higher
delay tolerance than CCAS and require higher throughput.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION
We assume a network region including multiple-MNOs that
serve their UEs using different applications with different
QoS and SLA requirements. Fig. 1 illustrates the considered
particular network region where hardware resources and UEs
are spatially distributed. We assume orthogonal frequency
division multiple access (OFDMA) scheme where each BS’s
carrier (also called as cell with a pre-defined bandwidth
amount such as 5MHz, 10MHz, 20MHz, etc.) can only serve
to one UE with a set of sub-carriers in a specific time slot
(known as RB in LTE domain). It should be noted that a given
BS can contain multiple cells operating at different carrier
frequencies (with the same or different amount of bandwidth)
in the same sector, and it has more than one sector in which
same carrier frequencies are utilized, typically known as unity
frequency reuse.

A. SYSTEM MODEL
Consider a set of multipleMNOs given byK = {1, 2, . . . ,K }
with K MNOs. Let the set of NSs in the available infrastruc-
ture is given by S = {1, 2, . . . , S} with S NSs. Let Sk ⊂ S
be the set of NSs assigned to MNO-k with Sk NSs. Also

let the set of NEs used by a MNO-k for a given NS-i be
given by F i

k = {1, 2, . . . ,F
i
k} with F

i
k NEs where NEs can

be cells, storage elements, gateways, core network elements,
etc. It should be noted that each MNO can be allocated with
different number of NEs for a given NS. Moreover, let F =
∪k∈K ∪i∈Sk F i

k be the set of all NEs. The set of UEs utilizing
NE-f ∈ F i

k are given by U i,f
k with U i,f

k UEs. For a given
NE-f in f ∈ F i

k , we denote UE-u ∈ U i,f
k as its associated

UE. Let Bi,fk,j be the set of resources available at NE-f ∈ F i
k

with Bi,fk,j resources where j ∈ {0, 1, 2, . . . ,R − 1} denotes
the type of resource and R is number of different types of
resources (e.g. storage available at data centers, bandwidth
available at cells, link capacities available at transmission
network equipment) and denote resource-bj ∈ Bi,fk,j as the
assigned resource. In order to meet the requirements of UEs,
the NE-f ∈ F i

k can select a subset of the resources in Bi,fk,j.
It should be noted that after resource allocation to the

service-based slices is done, conventional scheduling algo-
rithm (e.g., proportional fairness, round robin etc.) is per-
formed in order to share the allocated resources to their
relevant UEs with relatively smaller periods with respect to
service-based allocations.

B. PROBLEM DESCRIPTION
In this paper, we consider an example use case scenario
that focuses on providing resource allocation capabilities
for distributing NSs created dynamically based on service
demands inside the given network infrastructure. As of today,
network infrastructures consist of heterogeneous and propri-
etary sets of network equipment. Therefore, it is expected
that major paradigms such as SDN and NFV will shift the
mobile infrastructure from configurable networks into pro-
grammable networks, which will facilitate dynamic resource
allocation capabilities. Our scenario addresses the need for
dynamic allocation of resources and demands for MNOs on
the network infrastructure. One of themain innovations of our
scenario is the increased service satisfaction ratios that allow
reactive actions to be taken to allocate resources to services
based on the demands of MNOs and their corresponding ver-
tical industries. One of the technical challenges is to provide
an intelligent allocation of resources in order to achieve bet-
ter service satisfaction rates while considering the available
and guaranteed resources as well as demands. Additionally,
the solution should provide a quick and dynamic response in
order to guarantee NS SLAs of MNOs for their customers
(e.g. vertical industries, subscribers, etc) in a cost-efficient
way. This paper assumes not only a single resource demand
and the satisfaction of a service, but also considers simultane-
ous demands for multiple resources (such as bandwidth and
storage) that can be correlated with each other. The general
flowchart of the described use case scenario is summarized
in Fig. 3.

In this subsection, we shall define our multi-resource allo-
cation problem in which resource capacities are not randomly
described or determined. Individual resource allocation
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FIGURE 3. The flow of the proposed scenario.

problem is defined based on a set of constraints and a generic
objective function to be minimized. Conventionally, a fixed
amount of scalar resource, usually called capacity, must be
shared among M = Sk users (users represent the number
of NSs in our context) based on their respective resource
demands. Also, in a number of applications, users are guar-
anteed a particular amount of resource due to their SLA.
There are two approaches to the resource allocation problem:
(i) a reasonably defined objective/cost function is optimized
based on a set of constraints or (ii) a solution to the opti-
mization problem is seeked using an iterative algorithm that
satisfies a qualitative measure such as a fairness criterion.

In a myriad of real applications, more than one resource
is shared among M NSs simultaneously and the allocation
is performed independent of each other. Plus, some of the
resources such as bandwidth can be reused whereas other
resources cannot. On the other hand, it is observed that the
requested capacities of these resources are related as seen in
MNOs’ SLA offerings. In other words, neither the resources
that are offered nor the users sharing the resources are deter-
mined independently. For instance, a high-rate link connec-
tion usually comes with low or medium latency guarantees.
Additionally, users with higher bandwidth assignment are
allowed to make more connections and can cache more data
(for high speed access) than the users with lower bandwidth
requirements whereby MNO subscriber tariff plans are also
in accordance with this observation [35]. This is often due to
maximizing the user satisfaction with the aim of meeting the
pre-agreed SLA requirements.

Let us assume R resources with capacities C = {Cj ≥ 0,
0 ≤ j < R} where Cj represents Bs,fk,j where we sup-
pressed subscripts k, s and f for simplicity. We denote by di
(e.g. = Wi for throughput) the individual demand vec-
tor of NS-i ∈ Sk , where di(j) is the demand of NS i ∈
{0, 1, . . . ,M − 1} for the resource j. Similarly, we use ci(j)

to denote the resource amount allocated to NS-i ∈ Sk for
the resource j. Moreover, NS-i ∈ Sk is guaranteed gi(j) from
resource j and uses weight wj,i to quantify how important
a given resource is in order to be able to meet the SLA.
We assume that there is at least one resource j′ such that∑M−1

i=0 di(j′) > Cj′ i.e., it is not possible to fully satisfy all
NSs for all the resources they demand and we do not let
guaranteed resources to be beyond the total capacity available
for that resource i.e.,

∑M−1
i=0 gi(j) < Cj. In addition, we follow

the general logical rule that any NS cannot be assigned more
capacity than what is demanded.

Under the light of these assumptions, we have the fol-
lowing set of constraints for the multi-resource allocation
problem for 0 ≤ j < R and 0 ≤ i < M ,

min (gi(j),di(j)) ≤ ci(j) ≤ di(j),
M−1∑
i=0

ci(j) ≤ Cj (1)

wheremin function is used to cover the general case that if the
demand is smaller, then the guaranteed amount is not strictly
allocated.

Our final step is to determine the objective function. Due
to the guaranteed resource allocation, we cannot claim pure
fairness among the NSs as it is not something intended.
On the other hand, we are interested in the overall aver-
age satisfaction ratio of all M NSs. Therefore, for a given
resource j, we can quantify the discrepancy for NS-i ∈ Sk as
di(j)− ci(j) that we treat it as the soft error term that needs to
be minimized. To be able to normalize the soft error terms
coming from different resources (potentially with different
domains and support) we divide it by di(j).
However from marginal utility point of view, it is more

important whether the user is completely satisfied or not
relative to soft satisfaction ratio i.e., a binary decision have
to be made in order that resource to be any meaningful use
to the assigned party. In order to encode this information into
our problem, it is favorable to scale the normalized error to
a range between zero and unity. The mathematical function
that provides this mapping is the ceiling function. This finally
gives us the following optimization problem.
Optimization Problem 1 (Original Joint Multi-Resource

Allocation Based on SLA Requirements):

min
C

∑R−1

j=0

∑M−1

i=0
wj,i

⌈
di(j)− ci(j)

di(j)

⌉
, (2)

subject to

min (gi(j),di(j)) ≤ ci(j) ≤ di(j), 0 ≤ j < R, 0 ≤ i < M ,

(3)
M−1∑
i=0

ci(j) ≤ Cj, 0 ≤ j < R,
R−1∑
j=0

M−1∑
i=0

w2
j,i = 1 (4)

in which ceiling function is used to map soft information
to hard decisions ‘‘0’’ for satisfied and ‘‘1’’ for unsatisfied
states. However with this small change, the optimization
problem with the given non-smooth i.e., non-differentiable
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cost function would become quite hard to solve.1 One of
the useful approximations to ceiling function is tanh with
positive support. Thus, our weighted cost (error) function can
be expressed as

R−1∑
j=0

M−1∑
i=0

wj,itanh
(
di(j)− ci(j)

di(j)

)
(5)

where the weights wj,i can be adjusted based on how the
NS-i ∈ Sk -th satisfaction is affected by competing for
resource type j ∈ {0, 1, 2, . . . ,R − 1}. Alternative functions
could have been used though the concavity of tanh is deemed
useful from optimization point of view i.e., instead of mini-
mizing the equation (2), we shall minimize the equation (5)
which provides a convex (concave) cost and convex (concave)
constraint set whose local solution is guaranteed to be global
optimum. Note that the equation (5) is a concave function
of {ci(j)}, i.e., the sum of non-negative weighted concave
functions of a linear function of {ci(j)} is a concave function
of {ci(j)}. To see this, let c

(1)
i (j), c(2)i (j) ∈ [0,di(j)], then for a

constant θ ∈ (0, 1) we have

tanh

(
1−

θc(1)i (j)+ (1− θ )c(2)i (j)

di(j)

)
(6)

= tanh

(
θ −

θc(1)i (j)

di(j)
+ 1− θ +

(1− θ )c(2)i (j)

di(j)

)
(7)

≥ θ tanh

(
1−

c(1)i (j)

di(j)

)
+(1− θ )tanh

(
1−

c(2)i (j)

di(j)

)
(8)

where the last inequality is due to concavity of tanh for
the range of values of interest. Finally, since non-negative
weighted sum of concave functions is also concave, the result
follows.

One of the things we realize that the hyperbolic function
that we use i.e., tanhmaps [0,∞) to [0, 1). However, the func-
tion argument 1− ci(j)/di(j) has the range [0, 1− gi(j)/di(j)]
for gi(j) < di(j) and zero otherwise. To be able to express
it without the condition, we can further express the range
as [0, 1 − min(gi(j),di(j))/di(j)]. Note that this may lead to
the use of different ranges of the function by different user
and resource combinations. In order to address this issue,
we introduce a scaling coefficient αj,i that satisfies the fol-
lowing inequality

1− tanh
(
αj,i

(
1−

min(gi(j),di(j))
di(j)

))
≤ η (9)

where η ∈ (0, 1) is a small fixed tolerance value (such as
10−4) to be able to constrain the input range to [0, 1 − η].
Thus, depending on the guaranteed as well as the demanded
resource quantities, the domain of tanh function is prop-
erly adjusted to ascertain that each term in the sum expres-
sion (5) uses a similar functional transformation. Using the

1In the context of non-linear programming, this usually refers to the set of
non-convex optimization problems. In addition, due to non-differentiability,
iterative methods also suffer to converge to the global optimum.

equation (9) along with the known identity tanh−1(x) =
1
2 ln

(
1+x
1−x

)
for x ∈ R, we can simply find the minimum

αj,i that can be used in the following set of optimization
problems.

αj,i =
tanh−1(1− η)

1−min(gi(j),di(j))/di(j)

=
ln(2/η − 1)

2(1−min(gi(j),di(j))/di(j))

=
di(j)ln(

√
2/η − 1)

di(j)−min(gi(j),di(j))
(10)

Finally, αj,i gets multiplied by the argument of tanh function
in equation (5) the result of which can be expressed as

ln(
√
2/η − 1)(di(j)− ci(j))

di(j)−min(gi(j),di(j))
(11)

which will appear as the new argument of tanh.
Unfortunately, the challenge with multi-resource alloca-

tion problem is that an allocation strategy that meets a certain
fairness criterion for a given resource j ∈ {0, 1, 2, . . . ,R−1},
might not satisfy the same fairness criterion for the allocation
of resource j′ ∈ {0, 1, . . . ,R − 1}, j′ 6= j. It might even
be impossible to satisfy fairness at the same time for all the
resources. So the objective of this study is to find a trade-off
point that maximizes the overall utility prescribed byweights,
while minimizing the gap between the unconstrained solution
and the fair allocation in a max-min sense.

We can identify two distinct directions to allocation strat-
egy. The initial direction is to construct the appropriate
optimization problem and address the weighted joint multi-
resource allocation. The joint allocation strategy shall uti-
lize the correlation structure between different SLAs through
judiciously chosen weights and will provide better perfor-
mance relative to individual resource allocations. The second
direction will be towards finding a low complexity itera-
tive scheme that approximates the solution of the original
optimization problem while satisfying a desirable qualitative
property such as weighted max-min fairness as much as
possible (addressing the trade-off mentioned earlier). In the
latter direction, we shall adaptwater filling type of algorithms
for our joint multi-resource allocation problem in amulti-user
scenario.

IV. MULTI-RESOURCE ALLOCATION OPTIMIZATION
PROBLEMS AND SOLUTIONS
Using the discussion of previous section, let us provide
two different optimization problems that attempt to solve
the trade-off mentioned earlier with different complexities.
Then, we provide a low complexity iterative approach for
solving these optimization problems as well as explain how
we model SLA correlations into our optimization problems.
We begin with a single-phase joint multi-resource allocation
(abbreviated as SPATIAL) problem using equation (11) as
follows.
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Optimization Problem 2 (Single-Phase Joint Multi-
Resource Allocation (SPATIAL) Based on SLA Require-
ments):

min
C

∑R−1

j=0

∑M−1

i=0
wj,itanh

ln
(√

2
η
−1
)
(di(j)−ci(j))

di(j)−min(gi(j),di(j))

,
(12)

subject to

min (gi(j),di(j)) ≤ ci(j) ≤ di(j), 0 ≤ j < R, 0 ≤ i < M ,

(13)
M−1∑
i=0

ci(j) ≤ Cj, 0 ≤ j < R,
R−1∑
j=0

M−1∑
i=0

w2
j,i = 1 (14)

Next, we realize that SPATIAL is derived from the following
relatively more fair problem that also takes into account the
guaranteed resource management. Contrary to above case,
the latter problem consists of two phases.

In the initial phase (phase 0), each slice is allocated
with its guaranteed resources under the constraint of the
demanded values (as before to cover up the condition we
use minimum function to find the allocated capacity at
phase 0), e.g.,

ci,0(j) = min(gi(j),di(j)), 0 ≤ j < R, 0 ≤ i < M , (15)

where ci,0(j) denotes the initial capacity allocation for i−th
slice and j−th resource. Based on equation (15), a new
demand vector and remaining capacities can be derived as
follows,

di,F (j) = di(j)− ci,0(j), 0 ≤ j < R, 0 ≤ i < M , (16)

Cj,F = Cj −
M−1∑
i=0

ci,0(j), 0 ≤ j < R, (17)

where notation F denotes Final and Cj,F are the remaining
capacities after the initial allocation.

In the first phase (phase 1), we solve the following new
optimization problem. Note that the scaling coefficient for
this optimization problem should not depend on gi(j) as
its effect is stripped off. Since the range of the new argu-
ment is [0, 1], it would not depend on the user or the
resource indexes, so we name the new coefficient as β which
satisfies

1− tanh(β) ≤ η (18)

from which we can deduce β = tanh−1(1 − η) =
ln
(√

2/η − 1
)
similar to our previous arguments. Note that

the coefficient β does not depend on the resource type or user,
due to the fact that we subtracted the effect of guaran-
teed resource from the optimization context. This double-
phase joint multi-resource allocation (abbreviated as DOR-
SAL) strategy is characterized by the following optimization
problem.

Optimization Problem 3 (Double-Phase Joint Multi-
Resource Allocation (DORSAL) Based on SLA Require-
ments):

min
C

∑R−1

j=0

∑M−1

i=0

×wj,itanh


(
ln
(√

2
η
−1
))

(di,F (j)−ci,F (j))

di,F (j)

, (19)

subject to

0 ≤ ci,F (j) ≤ di,F (j), 0 ≤ j < R, 0 ≤ i < M ,

(20)
M−1∑
i=0

ci,F (j)≤Cj,F , 0 ≤ j<R,
R−1∑
j=0

M−1∑
i=0

w2
j,i=1

(21)
where CF = {Cj,F ≥ 0, 0 ≤ j < R}. It is not hard
to realize that this optimization problem is quite similar to
optimization problem 1 except the constant multiplying term
ln
(√

2/η − 1
)
and the same concavity arguments apply for

the cost function. This shall increase the chances of applying
convex optimization tools and be able to quickly obtain the
optimization solution.

Suppose the result of the optimization problem yields the
minimum values c∗i,F (j). Then, the final allocation will be
given by

c∗i (j) = c∗i,F (j)+ ci,0(j), 0 ≤ j < R, 0 ≤ i < M . (22)

We note that the tolerance value should also be judiciously
adjusted. This is because we observe that if η → 0 the
result of the minimization is

∑
j
∑

i wj,i which is actually the
maximum value possible for cost function to attain. Similarly,
if we let η → 1, the result of the minimization is zero
which is the trivial solution. However, in this case we are far
from our approximation of the ceiling function since as the
argument of tanh approaches zero, tanh return values close
to zero whereas ceiling function always returns 1 as long as
the argument never equals zero. As we shall see in numerical
results section, non-trivial best performing η can be found
using heuristics.

A. ITERATIVE METHOD
Although the second optimization has broken the problem
into two separate phases, the phase 1 can still be computation-
ally infeasible for power and energy-hungry systems such as
small ubiquitous IoT devices which may have only limited
resources. Additionally, solving optimization problem in a
dynamically changing environment is too much work to be
handled by 5G devices. Thus, it is desirable to provide a low
complexity iterative program, named JENNER (see Algo-
rithm 1), that approximates the result of the first optimization
problem.

It is important to identify that for the kth iteration of
JENNER for k > 0, the leftover amount for the resource j

20356 VOLUME 6, 2018



O. Narmanlioglu et al.: Service-Aware Multi-Resource Allocation

is given as

M−1∑
i=0

(di(j)− ci,k−1(j)) (23)

Note that if the NS is satisfied, then the leftover resource
is zero and does not contribute to the final error summation.
On the other hand, since we cannot provide capacity more
than we have, Cj minus the capacity given at the (t − 1)-th
iteration (denoted by ci,t−1) puts a constraint on the leftover
resource which wemodel into our expression using minimum
function. Finally, we use weights to differentiate between the
UEs. So the resource allocated to the NS-i ∈ Sk for resource
j shall be given by

ci,t (j) = ci,t−1(j)+min

di,t (j),
w2
j,i∑

i
w2
j,i

×min
(
Cj,t ,

∑M−1

l=0
dl,t (j)

) (24)

where di,t (j) and Cj,t are new demand values for NS-i ∈ Sk
and resource j ∈ {0, 1, 2, . . .R − 1} and the remaining jth

resource at the beginning of the t th step, respectively. They
can be calculated by

di,t (j) = di(j)− ci,t−1(j) (25)

Cj,t = Cj −
M−1∑
l=0

cl,t−1(j) (26)

for all t > 0. As you may note that we also need the first
minimum operation in equation (24) which ensures that no
NS gets resources more than needed.

The iterations cease either when the equalities in equa-
tion (21) are satisfied i.e., all the capacity is distributed, or all
the demands are satisfied. The initial condition (t = 0) for
the iterations is given in equation (15). We note that the
correlation structure of various SLAs of multiple resources
are captured by the weights wj,i which makes the calculations
of such weights an important task to carry out for the accu-
racy of the optimization solution. The complete algorithm is
provided in Algorithm 1. One choice for the calculation of
weights is based on AHP that we provide the details in the
next section.

B. WEIGHTS THROUGH AHP
AHP is a structured technique for organizing and analyz-
ing complex decisions [36]. Since resources are provided
based on different SLA offerings, priorities can change with
respect to the significance of each resource for the selected
application.

Let us suppose that we consider video streaming
application with demanded resources throughput, storage
space, latency and reliability. Note that this application
typically require relatively large throughput and limited

Algorithm 1 Joint Resource Allocation Using Iterative
Weighted Max-Min Fairness (JENNER)
Input: {gi(j)}, {Cj}, {di(j)}, R, M for 0 ≤ j < R,

0 ≤ i < M
Output: ci(j): Allocated share for resource

j ∈ {0, 1, 2, . . .R− 1} and NS-i ∈ Sk .
1 Define δM×R = {δi,j = 1} for 0 ≤ j < R, 0 ≤ i < M
2 for 0 ≤ j < R do
3 for 0 ≤ i < M do
4 ci,0(j) = min(gi(j),di(j))
5 if di(j) < gi(j) then
6 δi,j←− 0
7 end
8 di,1(j) = di(j)− ci,0(j)
9 end

10 Cj,1 = Cj −
∑M−1

l=0 cl,0(j)
11 end
12 t ←− 1
13 while

∑
j Cj,t > 0 and

∑
i
∑

j δi,j 6= 0 do
14 for 0 ≤ j < R do
15 for 0 ≤ i < M do
16 if δi,j = 1 then
17 ci,t (j) = ci,t−1(j)+

min

(
di,t (j),

w2
j,i∑

i
w2
j,i
min

(
Cj,t ,

∑M−1
l=0 dl,t (j)

))

18 di,t+1(j) = di(j)− ci,t (j)
19 if di,t+1(j) ≤ 0 then
20 ci,t (j) = di(j)
21 Cj = Cj + ci,t (j)− di(j)
22 γi,j←− 0
23 end
24 end
25 end
26 Cj,t+1 = Cj −

∑M−1
l=0 cl,k−1(j)

27 end
28 t = t + 1
29 end
30 return ci(j)

latency. In order to use AHP, we need to either get
pairwise significance of each resource for this applica-
tion from web-pages or customer surveys that are peri-
odically carried out to measure and respond to NS dis/
satisfaction.

Suppose we are given Table 2, also known as the signifi-
cance map, to assess the relative significance of each resource
with respect to video streaming application. Note that the
(i, j) entry of the significance map, represented by a matrix S,
is the reciprocal of the (j, i) entry i.e., the entries are not
independent of each other. The way we interpret this table
is for instance as follows: For application A, latency is three
times more important than the resource storage.

VOLUME 6, 2018 20357



O. Narmanlioglu et al.: Service-Aware Multi-Resource Allocation

TABLE 2. An example significance map of different network resources for
application A.

One of the key findings of AHP analysis is that the ranking
of the priorities of these resources is given by the eigenvector
of the maximum eigenvalue of the significance matrix S. For-
tunately, this eigenvector (also known as the priority column
vector pA for application A) can be closely approximated by
normalizing the columns of S and and taking the average of
the rows of S. For instance, the priority vector for the data
in Table 2 is given by [0.797 0.512 0.195 0.254]T for
application A. Alternatively, we could have used geometric
mean for the rows to calculate the non-normalized priority
vector.

Suppose that we have N = Sk slices (or we have M
users) called A1, . . . ,AN with an application priority vector
pN i.e., relative significance of each application compared to
others. For each application Am, we can use AHP analysis
to find its own priority vector pAm . Then, we can simply
express weights wn,m = pAm (n). If we would like to find a
single weight factor that does not depend on the application
but the resources, our weights can be computed given by the
following simple matrix multiplication operation[

w0 w1 . . . wR−1
]T
=
[
pA1 pA2 . . . pAN

]
pN

We finally note that although AHP analysis provides a
subjective measure of calculating weights, it may be replaced
with future objective methods and this replacement shall not
change our previous arguments about the proposed optimiza-
tion problems.

V. PERFORMANCE EVALUATION
In this section, wewill demonstrate that based on network vir-
tualization, which allows the sharing of underlying commu-
nication system resources, the proposed solution can provide
better QoS and, where applicable, yields better QoE levels
that meet the requirements of different vertical domains.
We start with the description of our simulation setup and
continue with some of the numerical results that support the
arguments and claims of this paper.

A. SIMULATION SETUP
We consider a particular network region where one BS
including 4 cells is serving UEs at different locations within
a circle with a radius of 1 km. Each UE is utilizing a unique
and different vertical application, one of MNO−1 mMTC,
MNO−2mMTC,MNO−1 eMBB (AR),MNO−2 eMBB (AR),
MNO−1 eMBB (Live Video, L.V.), and MNO−2 eMBB (Live
Video, L.V.). The cells within the BS under consideration
operates at 900 MHz band. Each cell uses a different carrier
with 20MHz bandwidth. It is assumed that the number of UEs

TABLE 3. Mean values of uniformly distributed number of UEs and their
throughput/storage requirements.

related to different vertical domains have uniform distribution
with different mean values. The mean values, throughput
and storage demands of each UE related to different vertical
services are given in Table 3. The randomly generated UEs
share the same bandwidth resource and storage2 with the total
capacity of 4 TB. The guaranteed values for storage resource
are set to 1.5 TB and 1 TB for MNO−1 eMBB (Live Video,
L.V.), andMNO−2 eMBB (Live Video, L.V.), respectively and
the remaining guaranteed values are set to zero.

TABLE 4. Downlink channel simulation parameters.

The downlink channel simulation parameters utilized
throughout our simulations are presented in Table 4.
We consider urban environment Okumura− Hata path loss
model [37] between each UE and BS which can be written as

HPL [dB] = 69.55+ 26.16log(f )− 13.82log(hB)

−CH + (44.9− 6.55log(hB))log(d), (27)

where d is the UE distance to BS in km and CH is antenna
height correction factor and for small and medium-sized
cities, it is given by

CH = 0.8+ (1.1log(f )− 0.7)hM − 1.56log(f ), (28)

where f is the operating frequency of each cell under BSs (set
to 900 MHz). The received signal power at the i-th UE side,
denoted by PRX, is equal to

PRX [dBm] = PHS−DSCH [dBm]+ GAntenna [dB]

−LCable [dB]− HPL [dB], (29)

without fast fading and shadowing effects. We further con-
sider single-input single-output (SISO) transmission model
for mMTC services and 8× 8 multiple-input multiple-output
(MIMO) transmission for the remaining services under the
assumption that downlink channel state information is avail-
able at the centralizedNEs. The ShannonCapacity formMTC

2Two different resources (or QoS requirement dimensions) are shared
among six different services (or slices under the assumption that each service
contains one slice).
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TABLE 5. Significance matrix S used in simulations.

UEs can be written as

CmMTC(u) = B(u)log2

(
1+

PRX
σ 2
N

)
(30)

where σ 2
N is the noise power and B(u) is equal to allocated

bandwidth for uth ∈ U i,f
k UE. Under the assumption that UEs

of eMBB services have the capability for multiple-antenna
(up to 8) transmission, let H ∈ C8×8 denote the channel
matrix between cells and eMBB UEs includes normalized
Rayleigh fading effect. Every H can be decomposed accord-
ingly to its singular values such as

H = UDVH (31)

where the matrices U and V are unitaries and D is non-
negative diagonal matrix where diagonal elements σi ∈
{0, 1..7} denote the singular values of the channel matrix.
When the transmitted signal vector with the dimension of
8 is multiplied with V and received signal vector with the
same dimension is multiplied withUH, MIMO channel model
is transformed to independent SISO sub-channels with the
channel gain of σ 2

i . The Shannon Capacity with respect to
singular values can be found as

CeMBB(u) = B(u)
7∑
i=0

log2

(
1+

PRX × σ 2
i (u)

σ 2
N

)
(32)

Regarding to service type of uth ∈ U i,f
k UE, first required

throughput (approximated by Shannon Capacity, C(u)) is
determined and then, required B(u) is calculated using known
C(u), PRX, σ 2

i (u), and σ
2
N .

B. NUMERICAL RESULTS
The significance matrix S that is used in our simulations for
AHP is given in Table 5. Since mMTC and eMBB (AR)
do not require any storage, their associated values are set
to one with respect to each other and remaining services.
The priority of eMBB (AR) and eMBB (Live Video) services
with respect to mMTC is increased through setting relevant
values in S to higher than one, specifically five. Between
mMTC services, priority of MNO-2 is assumed as higher so
that relevant value is set to five as well. We further prioritize
eMBB (AR) services with regard to eMBB (Live Video)
services for both MNO-1 and MNO-2. In the same matrix,

it can also be observed that MNO-2 has higher priority for
eMBB (AR) and eMBB (Live Video) services compared to
MNO-1’s.

The eigenvector corresponding to maximum eigenvalue
of S is pA = [ 0.08 0.18 0.10 0.18 0.49 0.18 0.65 0.18
0.13 0.17 0.23 0.30 ]T. The weight coefficient vectors for
resource-1 (bandwidth) and resource-2 (storage) can be found
as w1,i = pA(2i) and w2,i = pA(2i+1) for i ∈ {0, 1, . . . ,M−
1} and they become w1 = [0.08 0.10 0.49 0.65 0.13 0.23]T,
w2 = [0.18 0.18 0.18 0.18 0.17 0.30]T respectively. We uti-
lized MATLAB’s optimization toolbox for nonlinear pro-
gramming for the first and second proposed methods and
the results are obtained through Monte Carlo simulations.
We conduct 4000 independent simulations where the loca-
tion of UEs are randomly selected under the consideration
of uniform distribution within a radius of 1 km and the
number of UEs related to different services is determined
with respect to uniform distribution with the mean values
defined in Table 3 starting from zero. In each simulation,
it is determined whether the slice is fully satisfied based on
which the resource-specific satisfaction index is set to one
(if slice is fully satisfied) or zero (if slice is not fully satisfied).
Finally, service satisfied-ratio is calculated by averaging the
satisfaction indexes in each simulation which are depicted
in Fig. 4a and Fig. 4b where MMF3 allocation is considered
as our benchmark. We further calculate the ratio of allocated
resource to demand and the results are summarized in Fig. 5a
and Fig. 5b.
Regarding w1,i, it is expected that the weighted coef-

ficient increase the service satisfied-ratio and the ratio of
allocated resource to demand probabilities of the 4-th service
slice, i.e., MNO-2 eMBB (AR) during bandwidth resource
allocation. It is followed by 3-rd, 6-th, 5-th, 2-nd, and
1-st slices, respectively. However, these coefficients is
not guaranteed the certain ratio values due to non-
linearly of tanh and different amount of service demands.
For η = 0.2384, which basically sets ln (2/η − 1) term
inside (12) and (20) to one, Fig. 4a shows that the service
satisfied-ratio of the 4-th service is the highest with respect
to SPATIAL where it is equal to 99.3%. It is followed

3In MMF allocation [38], resources are orderly allocated to slices with
respect to their increasing demands and unsatisfied slices are given equal
share of the remaining resource.
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FIGURE 4. Service satisfied ratio of each slice on (a) bandwidth and (b)
storage utilization using MMF and our proposed schedulers assuming
η = 0.2384.

by 3-rd and 6-th services with the ratios of 92.83% and
90.47% in proportion to their priority levels as a consequence
of different weight coefficients. On the other hand, service
satisfied-ratio levels of 1-st and 2-nd services are higher than
5-th service due to the non-linearity of tanh that suppresses
the error term of the highly demanded 5-th service. It should
also be noted that since there is no guaranteed amount for the
bandwidth resource, DORSAL allocates the same amount of
resources with SPATIAL as is seen from Fig. 4a. JENNER
shows similar behaviour while allocating the resources to
services. However, the ratios are relatively lower than the
proposed first two methods, similar to allocation result of
MMF. JENNER outperforms MMF for 3-rd and 4-th ser-
vices as a consequence of weighted allocation mechanism.
In Fig. 4b, we provide the service satisfied-ratio of 5-th and
6-th services on storage utilization. It can be observed that
MNO-1, eMBB (Live Video) achieves the service satisfied-
ratios of 74.78%, 76.97%, and 75.05% with SPATIAL,

FIGURE 5. Ratio of allocated to demand of each service on (a) bandwidth
and (b) storage utilization using MMF and our proposed schedulers
assuming η = 0.2384.

DORSAL, and JENNER, respectively, whereas MMF
provides 74.78% service satisfied-ratio level for this service.
For the other service whose weighted coefficient is approxi-
mately twice of the first one, these amounts are increased to
85.67%, 82.10%, and 85.25% using SPATIAL,DORSAL, and
JENNER, respectively, whereas MMF increases the ratio to
82.10%. The reason of higher satisfied ratio obtained through
MMF is less average UE count leading to less demand
requirement, whereas to include weighted coefficient results
in a increment on the ratio with our proposed schedulers. The
similar behaviour can be observed in Figs. 5a and 5b for all
of the schedulers. The ratio of allocated resources to demand
levels are relatively higher than service satisfied-ratio levels
due to hard classification performed to determine whether the
service is satisfied or not.

In order to compare the performance of proposed sched-
ulers with each other and MMF, we present our results in
terms of both average service satisfied-ratio and average ratio
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FIGURE 6. Overall satisfaction ratio and overall ratio of allocated
resource amounts to demands assuming η = 0.2384.

of allocated resource to demand (see Fig. 6), which can be
calculated by

m̄ = 100×
R−1∑
j=0

M−1∑
i=0

wj,imi(j)

/
R−1∑
j=0

M−1∑
i=0

wj,i, (33)

where mi(j) either denotes the satisfied-ratio or ratio of allo-
cated resource to demand metric for service i for resource j.
The first proposed method, SPATIAL, achieves the highest
service satisfied-ratio of 87.87% while the DORSAL and
JENNER achieve 87.54% and 69.74%, respectively, whereas
MMF allocation provides a ratio of 62.28%. For the second
metric at the same η value, while MMF allocation secures the
value of 88.01%, our proposed methods,DORSAL, SPATIAL,
and JENNER achieve 94.44%, 94.33%, and 91.19%, respec-
tively. On the other hand, when Jain’s Fairness index is con-
sidered, MMF achieves the highest metric, numerically 0.971
and 0.998 for bandwidth and storage resources, respectively.
It is then followed by JENNER, SPATIAL, and DORSAL
with the values of 0.912, 0.874, and 0.874 for bandwidth
resource and 0.997, 0.9965, and 0.9961 for storage resource,
respectively. The results reveal that when the resources are
not equally important to services, the overall system satis-
faction ratio and fairness can jointly be optimized to provide
better resilience compared to individual sub-optimal resource
allocations.

The performance results in terms of different η are fur-
ther demonstrated in Fig. 7a and Fig. 7b for SPATIAL
and DORSAL. In Fig. 7a, the results reveal that SPATIAL
achieves the highest service satisfied-ratio value, 88.49%
with η of 0.1. This value is decreased to 87.87%, 85.32%,
and 82.78%, respectively, with the η of 0.2384, 0.01, and
0.001. Similar behaviour is observed for the ratio of allo-
cated resource to demand metric depicted in Fig. 7b. Numer-
ically, the ratio becomes 94.44%, 94.60%, 92.08%, and
90.61%, respectively, for the η equaling 0.2384, 0.1, 0.01,
and 0.001. DORSAL has the same behaviour for the same
metrics. It achieves the service satisfied-ratio and ratio of

FIGURE 7. (a) Overall service satisfied-ratio and (b) ratio of allocated
resource to demand of our proposed schedulers with respect to different
η values.

allocated resource to demand of 88.21% and 94.50% with
η = 0.1. It is then decreased to 87.54%, 84.99%, and
82.46%, respectively, for service satisfied-ratio metric and
94.33%, 91.97%, and 90.49%, respectively, for ratio of allo-
cated resource to demand metric with the values of 0.2384,
0.01, and 0.001. On one hand, fairness index of SPATIAL
and DORSAL becomes 0.889 and 0.916 using η = 0.1 and
0.01 for bandwidth resource. It is further increased to 0.929
from 0.874 using η = 0.001. When the second resource is
considered, there is an improvement with a value between
0.001 and 0.002 i.e., using lower η values. The results reveal
that different η values can be optimal depending on demands
and guaranteed values. Thus, optimal tolerance value can be
found using a simulation-based heuristics.

VI. CONCLUSION
In this paper, we have introduced an SDN-based network
slicing framework within a 5G network infrastructure. Addi-
tionally, by utilizing the benefits of this architecture, we have
investigated three different solutions for joint optimization
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of multiple resource allocations over the dimensions of a
given set of QoS requirements. An iterative version of the
solution to the optimization problem is also provided, and its
performance is evaluated with respect to optimum solutions
through Monte-Carlo simulations. The results are compared
using a traditional MMF scheduler as the benchmark in order
to demonstrate the improvements over satisfaction ratios.
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