• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@MEF
  • Enstitüler
  • Fen Bilimleri Enstitüsü
  • FBE, Yüksek Lisans - Proje Koleksiyonu
  • FBE, Yüksek Lisans, Proje Koleksiyonu
  • View Item
  •   DSpace@MEF
  • Enstitüler
  • Fen Bilimleri Enstitüsü
  • FBE, Yüksek Lisans - Proje Koleksiyonu
  • FBE, Yüksek Lisans, Proje Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Advanced Search

Default predicton models for mortgage loans

Thumbnail

View/Open

YL-Proje Dosyası (1.916Mb)

Access

info:eu-repo/semantics/openAccess

Date

2018

Author

Tezgiden, İlknur

Metadata

Show full item record

Citation

Tezgiden, İ. (2018). Default predicton models for mortgage loans, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye

Abstract

The mortgage financial crisis which in U.S. mid 2000’s has been expanded and took hold of the other countries in a short time. The impact of the crisis forced financial institutions, especially the banks, to monitor their credit portfolio closely. The aim of this study is to develop models for predicting mortgage default cases in the loan life cycle. Those models were developed by using 50.000 loan repayments that was randomly selected between 60 months. Total 622489 observation and 23 features were there in the dataset. Classification algorithms were applied on the models since the expected outputs of the models were either default (1) or not-default (0).
 
2000’ li yılların ortalarında ABD'de yaşanan ve ev kredilerinden kaynaklanan finansal kriz kısa süre içinde dünya çapında etkilerini göstermiştir. Yaşanan bu krizin etkileri finansal kurumları, özellikle bankaları, kredi portföylerinin kalitesini daha yakından izleme zorunda bırakmıştır. Bu çalışmanın amacı, finansal kurumlar için, müşteriye tahsis edilen ipotek karşılıklı ev kredisinin vadesi içerisinde batıp batmayacağını tahminleyecek modeller oluşturmaktır. İlgili modeller için 50.000 kredinin rastgele seçilen geri ödeme aylarından oluşan veri seti kullanılmıştır. Veri setinde toplam 622489 adet gözlem ile ilgili kredilere ait 23 özellik bulunmaktadır. Kredi tahsis edilen müşterilerin batıp (1) batmayacağı (0) sorusuna sınıflandırma modelleri kullanılarak cevap aranmıştır.
 

URI

https://hdl.handle.net/20.500.11779/1196

Collections

  • FBE, Yüksek Lisans, Proje Koleksiyonu [116]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@MEF

by OpenAIRE

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsInstitution AuthorTitlesORCIDSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeThis CollectionBy Issue DateAuthorsInstitution AuthorTitlesORCIDSubjectsTypeLanguageDepartmentCategoryPublisherAccess Type

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || MEF University || OAI-PMH ||

MEF University Library, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
MEF University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@MEF:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.