• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
Öğrenmeye Sınırsız Özgürlük
View Item 
  •   DSpace@MEF
  • Enstitüler
  • Fen Bilimleri Enstitüsü
  • FBE, Yüksek Lisans - Proje Koleksiyonu
  • FBE, Yüksek Lisans, Proje Koleksiyonu
  • View Item
  •   DSpace@MEF
  • Enstitüler
  • Fen Bilimleri Enstitüsü
  • FBE, Yüksek Lisans - Proje Koleksiyonu
  • FBE, Yüksek Lisans, Proje Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Advanced Search

The automatic identification of butterfly species using deep learning methodologies

Thumbnail

View/Open

YL-Proje Dosyası (839.1Kb)

Access

info:eu-repo/semantics/openAccess

Date

2020

Author

Tek Kara, Seda Emel

Metadata

Show full item record

Citation

Tek Kara, S. E. (2021). The Automatic Identification of Butterfly Species Using Deep Learning Methodologies. MEF Üniversitesi Fen Bilimleri Enstitüsü, Bilişim Teknolojileri Yüksek Lisans Programı. ss. 1-24

Abstract

Automatic identification of butterflies, especially at an expert level, is needed for important topics such as species conservation studies, minimizing the insect damage on plants in agriculture, and biodiversity conservation. An efficient and performing model which can define species even in small datasets may reduce the need for experts on the subject or reduce the time spent for identification. By the model proposed in this study, automatic taxonomic classification of butterflies was studied. Convolutional Neural Network (CNN) applications were applied on 7148 photographs of six butterfly species used in the study. 80 percent of the data set was reserved for training and 20 percent for testing, and the model was run with the relevant parameters. At the end of the study, an accuracy degree of 92.73% was obtained.

URI

https://hdl.handle.net/20.500.11779/1688

Collections

  • FBE, Yüksek Lisans, Proje Koleksiyonu [112]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@MEF

by OpenAIRE

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsInstitution AuthorTitlesORCIDSubjectsTypeLanguageDepartmentCategoryWoS Q ValueScopus Q ValuePublisherAccess TypeThis CollectionBy Issue DateAuthorsInstitution AuthorTitlesORCIDSubjectsTypeLanguageDepartmentCategoryWoS Q ValueScopus Q ValuePublisherAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || MEF University || OAI-PMH ||

MEF University Library, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
MEF University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@MEF:


DSpace 6.3.1

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.