• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@MEF
  • Enstitüler
  • Fen Bilimleri Enstitüsü
  • FBE, Yüksek Lisans - Proje Koleksiyonu
  • FBE, Yüksek Lisans, Proje Koleksiyonu
  • View Item
  •   DSpace@MEF
  • Enstitüler
  • Fen Bilimleri Enstitüsü
  • FBE, Yüksek Lisans - Proje Koleksiyonu
  • FBE, Yüksek Lisans, Proje Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Advanced Search

Online shopping purchasing prediction

Thumbnail

View/Open

YL-Proje Dosyası (1.429Mb)

Access

info:eu-repo/semantics/openAccess

Date

2021

Author

Kazezyılmaz, İdil

Metadata

Show full item record

Citation

Kazezyılmaz, İ. (2021). Online Shopping Purchasing Prediction. MEF Üniversitesi Fen Bilimleri Enstitüsü, Büyük Veri Analitiği Yüksek Lisans Programı. ss. 1-49

Abstract

This project aims to understand the purchasing behavior of the consumers and make predictions about purchasing according to website metrics such as page values, bounce rates. An existing dataset is used in this project. This dataset is available in the collection of data from an e-commerce website by Google Analytics, which consists of 10 numerical and 8 categorical attributes coming from 12,330 sessions. The 'Revenue' attribute is used as the class label. The attributes that have high impact on the prediction are; "Administrative", "Administrative Duration", "Informational", "Informational Duration", "Product Related" and "Product-Related Duration". They represent the number of different types of pages visited by the visitor in that session and the total time spent in each of these page categories. The "Bounce Rate", "Exit Rate" and "Page Value" features represent the metrics measured by Google Analytics for each page in the e-commerce site. The "Special Day '' feature indicates the closeness of the site visiting time to a specific special day (e.g. Mother’s Day, Valentine's Day) in which the sessions are more likely to be finalized with a transaction. Since the purpose of this project is to predict potential purchasing using existing data, in the prediction part several machine learning algorithms such as decision trees, random forests will be applied to compare the models. The most suitable model will be chosen among these algorithms.

URI

https://hdl.handle.net/20.500.11779/1718

Collections

  • FBE, Yüksek Lisans, Proje Koleksiyonu [116]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@MEF

by OpenAIRE

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsInstitution AuthorTitlesORCIDSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeThis CollectionBy Issue DateAuthorsInstitution AuthorTitlesORCIDSubjectsTypeLanguageDepartmentCategoryPublisherAccess Type

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || MEF University || OAI-PMH ||

MEF University Library, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
MEF University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@MEF:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.