• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@MEF
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik Elektronik Mühendisliği | Electrical and Electronics Engineering
  • MF, EEM, Makale Koleksiyonu
  • View Item
  •   DSpace@MEF
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik Elektronik Mühendisliği | Electrical and Electronics Engineering
  • MF, EEM, Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Advanced Search

An adaptive admittance controller for collaborative drilling with a robot based on subtask classification via deep learning

Thumbnail

View/Open

Full Text - Article (2.881Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2022

Author

Güler, Berk
Niaz, P. Pouya
Madani, Alireza
Aydın, Yusuf
Başdoğan, Çağatay

Metadata

Show full item record

Citation

Berk, G., Niaz, P. P., Madani, A., Aydın, Y., Basdogan, C.(October 2022). An adaptive admittance controller for collaborative drilling with a robot based on subtask classification via deep learning. Mechatronics. pp. 1-14.

Abstract

In this paper, we propose a supervised learning approach based on an Artificial Neural Network (ANN) model for real-time classification of subtasks in a physical human–robot interaction (pHRI) task involving contact with a stiff environment. In this regard, we consider three subtasks for a given pHRI task: Idle, Driving, and Contact. Based on this classification, the parameters of an admittance controller that regulates the interaction between human and robot are adjusted adaptively in real time to make the robot more transparent to the operator (i.e. less resistant) during the Driving phase and more stable during the Contact phase. The Idle phase is primarily used to detect the initiation of task. Experimental results have shown that the ANN model can learn to detect the subtasks under different admittance controller conditions with an accuracy of 98% for 12 participants. Finally, we show that the admittance adaptation based on the proposed subtask classifier leads to 20% lower human effort (i.e. higher transparency) in the Driving phase and 25% lower oscillation amplitude (i.e. higher stability) during drilling in the Contact phase compared to an admittance controller with fixed parameters.

Volume

86

URI

https://doi.org/10.1016/j.mechatronics.2022.102851
https://hdl.handle.net/20.500.11779/1788

Collections

  • Araştırma Çıktıları, Scopus İndeksli Yayınlar Koleksiyonu [455]
  • Araştırma Çıktıları, WOS İndeksli Yayınlar Koleksiyonu [482]
  • MF, EEM, Makale Koleksiyonu [14]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@MEF

by OpenAIRE

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsInstitution AuthorTitlesORCIDSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeThis CollectionBy Issue DateAuthorsInstitution AuthorTitlesORCIDSubjectsTypeLanguageDepartmentCategoryPublisherAccess Type

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || MEF University || OAI-PMH ||

MEF University Library, İstanbul, Turkey
If you find any errors in content please report us

Creative Commons License
MEF University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@MEF:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.